×

zbMATH — the first resource for mathematics

Varieties minimal over representable varieties of lattice-ordered groups. (English) Zbl 0790.06019
A new method of constructing non-representable covers of some representable \(\ell\)-varieties in the lattice of \(\ell\)-varieties \(L\) is defined. Using this method, all non-representable covers of any weakly Abelian \(\ell\)-variety and any representable \(\ell\)-metabelian \(\ell\)- variety are described. Some interesting problems on covers in the lattice \(L\) are posed.

MSC:
06F15 Ordered groups
08B99 Varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson M., An Introduction (1987)
[2] DOI: 10.1080/00927878408823111 · Zbl 0506.06006 · doi:10.1080/00927878408823111
[3] Bigard A., Groupes et Anneaux ReticulĂ©s (1977) · Zbl 0384.06022 · doi:10.1007/BFb0067004
[4] Cohn P.M., Universal Algebra (1981) · doi:10.1007/978-94-009-8399-1
[5] Conrad, P. Torsion radicals of lattice-ordered groups. Symposia Math. Vol. 21, pp.479–513.
[6] DOI: 10.1017/S1446788700005760 · Zbl 0172.31601 · doi:10.1017/S1446788700005760
[7] DOI: 10.1007/BF00337696 · Zbl 0627.06014 · doi:10.1007/BF00337696
[8] Darnel M., Powers of the representable variety of lattice-ordered groups · Zbl 0738.06015
[9] DOI: 10.1007/BF02483914 · Zbl 0438.06003 · doi:10.1007/BF02483914
[10] DOI: 10.1007/BF01191764 · Zbl 0521.06017 · doi:10.1007/BF01191764
[11] Gilman L., Rings of Continuous Functions (1960) · doi:10.1007/978-1-4615-7819-2
[12] Glass A.M.W., Lattice-ordered Groups:Advances and Techniques (1989) · doi:10.1007/978-94-009-2283-9
[13] DOI: 10.1007/BF02482885 · Zbl 0439.06013 · doi:10.1007/BF02482885
[14] Gurchenkov S.A., Math. Notes 35 pp 356– (1984) · Zbl 0545.06008 · doi:10.1007/BF01137691
[15] Gurchenkov S.A., Alg. i Logika 23 pp 27– (1984)
[16] Gurchenkov S.A., Alg. i Logika 27 pp 249– (1988)
[17] DOI: 10.1007/BF00969570 · Zbl 0632.06023 · doi:10.1007/BF00969570
[18] Holland W.C., Czech. Math. J 29 pp 11– (1987)
[19] DOI: 10.1090/S0002-9939-1976-0406902-0 · doi:10.1090/S0002-9939-1976-0406902-0
[20] Holland, W.C. and Reilly, N.R. Structure and laws of the Scrimger varieties of lattice ordered groups. Proc. First Inter. Conf. on Ordered Algebras. pp.71–81. Heldermann. · Zbl 0624.06023
[21] Hollister H., Weakly n-abelian l-groups, · Zbl 0174.06002
[22] Huss M., Ph.D.Dissertation (1984)
[23] Kopytov V.M., Mat. Sb 126 pp 247– (1985)
[24] Kurosh A.G., The Theory of Groups (1960) · Zbl 0094.24501
[25] Magnus, W., M Korrass, A. and Solitar, D. Combinatorial Group Theory. Presentation of Groups in Terms of Generators and Relations. Dover.
[26] DOI: 10.1007/BF01214370 · Zbl 0274.20034 · doi:10.1007/BF01214370
[27] DOI: 10.1007/BF01669432 · Zbl 0395.06008 · doi:10.1007/BF01669432
[28] DOI: 10.1080/00927878908823857 · Zbl 0689.06015 · doi:10.1080/00927878908823857
[29] DOI: 10.1007/BF00400292 · Zbl 0616.06016 · doi:10.1007/BF00400292
[30] DOI: 10.4153/CJM-1981-099-2 · Zbl 0451.06017 · doi:10.4153/CJM-1981-099-2
[31] DOI: 10.1007/BF01214607 · Zbl 0439.06014 · doi:10.1007/BF01214607
[32] DOI: 10.1090/S0002-9939-1975-0384644-7 · doi:10.1090/S0002-9939-1975-0384644-7
[33] Smith J.E., Houston J. Math 71 pp 551– (1981)
[34] DOI: 10.1007/BF01362439 · Zbl 0138.26201 · doi:10.1007/BF01362439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.