×

Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping. (English) Zbl 1375.65005

Summary: Polynomial chaos expansions (PCEs) have proven efficiency in a number of fields for propagating parametric uncertainties through computational models of complex systems, namely structural and fluid mechanics, chemical reactions and electromagnetism, etc. For problems involving oscillatory, time-dependent output quantities of interest, it is well known that achieving reasonable accuracy in PCE-based approaches is difficult in the long term. To address this issue, we propose a fully nonintrusive approach based on stochastic time warping: each realization (trajectory) of the model response is first rescaled to its own time scale so as to put all sampled trajectories in-phase in a common virtual time line. Principal component analysis is introduced to compress the information contained in these transformed trajectories, and then sparse PCE representations using least angle regression are used to approximate the components. The approach shows a remarkably small prediction error not only for particular trajectories but also for second-order statistics of the latter. The approach is illustrated on different benchmark problems that are well-known in the time-dependent PCE literature, such as rigid body dynamics, chemical reactions, and forced oscillations of a nonlinear system.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
62H25 Factor analysis and principal components; correspondence analysis
62G30 Order statistics; empirical distribution functions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Abramowitz and I. Stegun, {\it Handbook of Mathematical Functions}, Dover Publications, Inc., New York, 1970. · Zbl 0171.38503
[2] A. Alexanderian, O. Le Maître, H. Najm, M. Iskandarani, and O. Knio, {\it Multiscale stochastic preconditioners in non-intrusive spectral projection}, J. Sci. Comput., 50 (2012), pp. 306-340. · Zbl 1242.65009
[3] A. Alexanderian, F. Rizzi, M. Rathinam, O. Le Maître, and O. Knio, {\it Preconditioned Bayesian regression for stochastic chemical kinetics}, J. Sci. Comput., 58 (2014), pp. 592-626. · Zbl 1296.65009
[4] P. S. Beran, C. L. Pettit, and D. R. Millman, {\it Uncertainty quantification of limit-cycle oscillations}, J. Comput. Phys., 217 (2006), pp. 217-247. · Zbl 1147.76552
[5] G. Blatman, {\it Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis}, Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2009.
[6] G. Blatman and B. Sudret, {\it An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis}, Prob. Eng. Mech., 25 (2010), pp. 183-197.
[7] G. Blatman and B. Sudret, {\it Adaptive sparse polynomial chaos expansion based on least angle regression}, J. Comput. Phys., 230 (2011), pp. 2345-2367. · Zbl 1210.65019
[8] G. Blatman and B. Sudret, {\it Sparse polynomial chaos expansions of vector-valued response quantities}, in Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR 2013), G. Deodatis, ed., New York, 2013, pp. 3245-3252.
[9] F. L. Bookstein, {\it Morphometric Tools for Landmark Data: Geometry and Biology}, Cambridge University Press, Cambridge, UK, 1997. · Zbl 0770.92001
[10] R. W. Bunton and C. M. Denegri, {\it Limit cycle oscillation characteristics of fighter aircraft}, J. Aircraft, 37 (2000), pp. 916-918.
[11] M. Cheng, T. Y. Hou, and Z. Zhang, {\it A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms}, J. Comput. Phys., 242 (2013), pp. 843-868. · Zbl 1297.65008
[12] M. Choi, T. P. Sapsis, and G. E. Karniadakis, {\it On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations}, J. Comput. Phys., 270 (2014), pp. 1-20. · Zbl 1349.65535
[13] A. Desai, J. A. S. Witteveen, and S. Sarkar, {\it Uncertainty quantification of a nonlinear aeroelastic system using polynomial chaos expansion with constant phase interpolation}, J. Vib. Acoust., 135 (2013), 51034.
[14] P. J. Dossantos-Uzarralde and A. Guittet, {\it A polynomial chaos approach for nuclear data uncertainties evaluations}, Nucl. Data Sheets, 109 (2008), pp. 2894-2899.
[15] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, {\it Least angle regression}, Ann. Statist., 32 (2004), pp. 407-499. · Zbl 1091.62054
[16] M. Gerritsma, J.-B. van der Steen, P. Vos, and G. Karniadakis, {\it Time-dependent generalized polynomial chaos}, J. Comput. Phys., 229 (2010), pp. 8333-8363. · Zbl 1201.65216
[17] R. Ghanem and P. Spanos, {\it Stochastic Finite Elements: A Spectral Approach}, 2nd ed., Courier Dover Publications, Mineola, NY, 2003. · Zbl 0953.74608
[18] D. Ghosh and G. Iaccarino, {\it Applicability of the spectral stochastic finite element method in time-dependent uncertain problems}, Annual Research Briefs of Center for Turbulence Research, 2007, pp. 133-141.
[19] J. D. Jakeman, A. Narayan, and D. Xiu, {\it Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions}, J. Comput. Phys., 242 (2013), pp. 790-808. · Zbl 1311.65158
[20] C. Kafali and M. Grigoriu, {\it Seismic fragility analysis: Application to simple linear and nonlinear systems}, Earthq. Eng. Struct. Dyn., 36 (2007), pp. 1885-1900.
[21] R. H. Kraichnan, {\it Direct-interaction approximation for a system of several interacting simple shear waves}, Phys. Fluids, 6 (1963), pp. 1603-1609. · Zbl 0122.44204
[22] O. Le Maître and O. Knio, {\it Spectral Methods for Uncertainty Quantification}, Springer, Berlin, 2010. · Zbl 1193.76003
[23] O. Le Ma\^\itre, L. Mathelin, O. Knio, and M. Hussaini, {\it Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics}, Discret. Contin. Dyn. Syst., 28 (2010), pp. 199-226. · Zbl 1198.37072
[24] O. Le Ma\^\itre, H. Najm, R. Ghanem, and O. Knio, {\it Multi-resolution analysis of Wiener-type uncertainty propagation schemes}, J. Comput. Phys., 197 (2004), pp. 502-531. · Zbl 1056.65006
[25] D. M. Luchtenburg, S. L. Brunton, and C. W. Rowley, {\it Long-time uncertainty propagation using generalized polynomial chaos and flow map composition}, J. Comput. Phys., 274 (2014), pp. 783-802. · Zbl 1351.37262
[26] D. Lucor and G. Karniadakis, {\it Adaptive generalized polynomial chaos for nonlinear random oscillators}, SIAM J. Sci. Comput., 26 (2004), pp. 720-735, . · Zbl 1075.65008
[27] C. V. Mai, M. Spiridonakos, E. N. Chatzi, and B. Sudret, {\it Surrogate modelling for stochastic dynamical systems by combining nonlinear autoregressive with exogenous input models and polynomial chaos expansions}, Int. J. Uncertain. Quantif., 6 (2016), pp. 313-339. · Zbl 1498.60289
[28] C. V. Mai and B. Sudret, {\it Hierarchical adaptive polynomial chaos expansions}, in Proceedings of the 1st International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP), M. Papadrakakis, V. Papadopoulos, and G. Stefanou, eds., Creta, Greece, 2015, pp. 65-78. Available online at .
[29] C. V. Mai and B. Sudret, {\it Polynomial chaos expansions for damped oscillators}, in Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), T. Haukaas, ed., Vancouver, Canada, 2015. Available online at .
[30] S. Marelli and B. Sudret, {\it UQLab: A framework for uncertainty quantification in MATLAB}, in Vulnerability, Uncertainty, and Risk (Proceedings of the 2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM 2014)), Liverpool, United Kingdom, 2014, pp. 2554-2563.
[31] S. Marelli and B. Sudret, {\it UQLab User Manual – Polynomial Chaos Expansions}, Tech. report UQLab-V0.9-104, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, 2015.
[32] A. Nouy, {\it Identification of multi-modal random variables through mixtures of polynomial chaos expansions}, C. R. Mécanique, 338 (2010), pp. 698-703. · Zbl 1221.62162
[33] S. A. Orszag, {\it Dynamical properties of truncated Wiener-Hermite expansions}, Phys. Fluids, 10 (1967), pp. 2603-2613. · Zbl 0166.46204
[34] H. C. Ozen and G. Bal, {\it Dynamical polynomial chaos expansions and long time evolution of differential equations with random forcing}, SIAM/ASA J. Uncertainty Quantification, 4 (2016), pp. 609-635, . · Zbl 1346.60108
[35] J. Peraire and S. Widnall, {\it 3d Rigid Body Dynamics: Equations of Motion}, MIT OpenCourseWare, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 2009.
[36] C. Pettit and P. Beran, {\it Spectral and multiresolution Wiener expansions of oscillatory stochastic processes}, J. Sound. Vib., 294 (2006), pp. 752-779.
[37] M. M. Rajabi, B. Ataie-Ashtiani, and C. T. Simmons, {\it Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations}, J. Hydrol., 520 (2014), pp. 101-122.
[38] J. O. Ramsay and X. Li, {\it Curve registration}, J. Roy. Statist. Soc. B., 60 (1998), pp. 351-363. · Zbl 0909.62033
[39] H. Sakoe and S. Chiba, {\it Dynamic programming algorithm optimization for spoken word recognition}, IEEE Trans. Acoust. Speech Signal Process., 26 (1978), pp. 43-49. · Zbl 0371.68035
[40] E. Sarrouy, O. Dessombz, and J.-J. Sinou, {\it Stochastic study of a non-linear self-excited system with friction}, Eur. J. Mech. A Solids, 40 (2013), pp. 1-10. · Zbl 1406.70034
[41] C. Soize, {\it Polynomial chaos expansion of a multimodal random vector}, SIAM/ASA J. Uncertainty Quantification, 3 (2015), pp. 34-60, . · Zbl 1327.62332
[42] C. Soize and R. Ghanem, {\it Physical systems with random uncertainties: Chaos representations with arbitrary probability measure}, SIAM J. Sci. Comput., 26 (2004), pp. 395-410, . · Zbl 1075.60084
[43] M. D. Spiridonakos and E. N. Chatzi, {\it Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models}, Comput. Struct., 157 (2015), pp. 99-113.
[44] M. D. Spiridonakos and E. N. Chatzi, {\it Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation}, Earthquakes and Structures, 8 (2015), pp. 915-934.
[45] X. Wan and G. Karniadakis, {\it Long-term behavior of polynomial chaos in stochastic flow simulations}, Comput. Methods Appl. Mech. Eng., 195 (2006), pp. 5582-5596. · Zbl 1123.76058
[46] X. Wan and G. E. Karniadakis, {\it Multi-element generalized polynomial chaos for arbitrary probability measures}, SIAM J. Sci. Comput., 28 (2006), pp. 901-928, . · Zbl 1128.65009
[47] X. Wan and G. E. Karniadakis, {\it An adaptive multi-element generalized polynomial chaos method for stochastic differential equations}, J. Comput. Phys., 209 (2005), pp. 617-642. · Zbl 1078.65008
[48] K. Wang and T. Gasser, {\it Alignment of curves by dynamic time warping}, Ann. Statist., 25 (1997), pp. 1251-1276. · Zbl 0898.62051
[49] J. A. S. Witteveen and H. Bijl, {\it An alternative unsteady adaptive stochastic finite elements formulation based on interpolation at constant phase}, Comput. Methods Appl. Mech. Eng., 198 (2008), pp. 578-591. · Zbl 1228.74098
[50] J. A. Witteveen and G. Iaccarino, {\it Simplex stochastic collocation with eno-type stencil selection for robust uncertainty quantification}, J. Comput. Phys., 239 (2013), pp. 1-21.
[51] D. Xiu and G. E. Karniadakis, {\it The Wiener-Askey polynomial chaos for stochastic differential equations}, SIAM J. Sci. Comput., 24 (2002), pp. 619-644, . · Zbl 1014.65004
[52] V. Yaghoubi, S. Marelli, B. Sudret, and T. Abrahamsson, {\it Sparse Polynomial Chaos Expansions of Frequency Response Functions Using Stochastic Frequency Transformation}, preprint, , 2016; Prob. Eng. Mech., to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.