Alvarez, Mario; Gatica, Gabriel N.; Ruiz-Baier, Ricardo A mixed-primal finite element method for the coupling of Brinkman-Darcy flow and nonlinear transport. (English) Zbl 07315155 IMA J. Numer. Anal. 41, No. 1, 381-411 (2021). MSC: 65 PDF BibTeX XML Cite \textit{M. Alvarez} et al., IMA J. Numer. Anal. 41, No. 1, 381--411 (2021; Zbl 07315155) Full Text: DOI
Carstensen, Carsten; Mallik, Gouranga; Nataraj, Neela Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. (English) Zbl 07315149 IMA J. Numer. Anal. 41, No. 1, 164-205 (2021). MSC: 65 PDF BibTeX XML Cite \textit{C. Carstensen} et al., IMA J. Numer. Anal. 41, No. 1, 164--205 (2021; Zbl 07315149) Full Text: DOI
Hassainia, Zineb; Hmidi, Taoufik Steady asymmetric vortex pairs for Euler equations. (English) Zbl 07314938 Discrete Contin. Dyn. Syst. 41, No. 4, 1939-1969 (2021). MSC: 35Q35 35Q31 53C35 PDF BibTeX XML Cite \textit{Z. Hassainia} and \textit{T. Hmidi}, Discrete Contin. Dyn. Syst. 41, No. 4, 1939--1969 (2021; Zbl 07314938) Full Text: DOI
Chu, Jifeng; Yang, Yanjuan A cylindrical coordinates approach to constant vorticity geophysical waves with centripetal forces at arbitrary latitude. (English) Zbl 07308682 J. Differ. Equations 279, 46-62 (2021). MSC: 35Q31 35J60 76B15 35C07 76B47 76B45 35B34 PDF BibTeX XML Cite \textit{J. Chu} and \textit{Y. Yang}, J. Differ. Equations 279, 46--62 (2021; Zbl 07308682) Full Text: DOI
Seth, Douglas S. Steady three-dimensional ideal flows with nonvanishing vorticity in domains with edges. (English) Zbl 07289106 J. Differ. Equations 274, 345-381 (2021). MSC: 35Q31 76B47 35J05 PDF BibTeX XML Cite \textit{D. S. Seth}, J. Differ. Equations 274, 345--381 (2021; Zbl 07289106) Full Text: DOI
Wang, Guodong On 2D steady Euler flows with small vorticity near the boundary. (English) Zbl 1451.35123 J. Differ. Equations 270, 24-46 (2021). MSC: 35Q31 76B47 76B03 35J61 35J20 PDF BibTeX XML Cite \textit{G. Wang}, J. Differ. Equations 270, 24--46 (2021; Zbl 1451.35123) Full Text: DOI
Flandoli, Franco; Luo, Dejun Point vortex approximation for 2D Navier-Stokes equations driven by space-time white noise. (English) Zbl 1452.76054 J. Math. Anal. Appl. 493, No. 2, Article ID 124560, 21 p. (2021). MSC: 76D06 76D17 76M35 35Q30 PDF BibTeX XML Cite \textit{F. Flandoli} and \textit{D. Luo}, J. Math. Anal. Appl. 493, No. 2, Article ID 124560, 21 p. (2021; Zbl 1452.76054) Full Text: DOI
Barsukow, Wasilij Stationary states of finite volume discretizations of multi-dimensional linear hyperbolic systems. (English) Zbl 07315474 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 296-303 (2020). MSC: 35L40 65M06 65M08 39A70 PDF BibTeX XML Cite \textit{W. Barsukow}, AIMS Ser. Appl. Math. 10, 296--303 (2020; Zbl 07315474)
Yang, Jiaqi Localization of the vorticity direction conditions for the 3D shear thickening fluids. (English) Zbl 07304748 Bull. Korean Math. Soc. 57, No. 6, 1481-1490 (2020). MSC: 35Q30 76A05 35B65 35D30 PDF BibTeX XML Cite \textit{J. Yang}, Bull. Korean Math. Soc. 57, No. 6, 1481--1490 (2020; Zbl 07304748) Full Text: DOI
Popovych, Roman O.; Bihlo, Alexander Inverse problem on conservation laws. (English) Zbl 1453.35192 Physica D 401, Article ID 132175, 16 p. (2020). MSC: 35R30 34A55 PDF BibTeX XML Cite \textit{R. O. Popovych} and \textit{A. Bihlo}, Physica D 401, Article ID 132175, 16 p. (2020; Zbl 1453.35192) Full Text: DOI
Xie, Yaning; Ying, Wenjun A high-order kernel-free boundary integral method for incompressible flow equations in two space dimensions. (English) Zbl 07296133 Numer. Math., Theory Methods Appl. 13, No. 3, 595-619 (2020). MSC: 65N99 PDF BibTeX XML Cite \textit{Y. Xie} and \textit{W. Ying}, Numer. Math., Theory Methods Appl. 13, No. 3, 595--619 (2020; Zbl 07296133) Full Text: DOI
Zhou, Lansuo; Luan, Jinfeng; Yin, Xiaojun; Na, Renmandula Inhomogeneous mKdV-Burgers equation under with complete Coriolis force and weak topography. (English) Zbl 07295476 J. Math., Wuhan Univ. 40, No. 4, 473-480 (2020). MSC: 35Q53 76B65 86A10 PDF BibTeX XML Cite \textit{L. Zhou} et al., J. Math., Wuhan Univ. 40, No. 4, 473--480 (2020; Zbl 07295476) Full Text: DOI
Pivovarov, Yu. V. Describing the asymptotic behavior of a low-viscosity fluid in an elliptical plane with a moving boundary. (English. Russian original) Zbl 1451.76098 J. Appl. Mech. Tech. Phys. 61, No. 1, 25-36 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 1, 30-42 (2020). MSC: 76M45 35Q35 35R37 PDF BibTeX XML Cite \textit{Yu. V. Pivovarov}, J. Appl. Mech. Tech. Phys. 61, No. 1, 25--36 (2020; Zbl 1451.76098); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 1, 30--42 (2020) Full Text: DOI
Kharif, C.; Abid, M.; Carter, J. D.; Kalisch, H. Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity. (English) Zbl 1448.35072 Phys. Lett., A 384, No. 2, Article ID 126060, 6 p. (2020). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{C. Kharif} et al., Phys. Lett., A 384, No. 2, Article ID 126060, 6 p. (2020; Zbl 1448.35072) Full Text: DOI
Caflisch, R. E.; Lombardo, M. C.; Sammartino, M. M. L. Vortex layers of small thickness. (English) Zbl 1452.35146 Commun. Pure Appl. Math. 73, No. 10, 2104-2179 (2020). MSC: 35Q35 76B47 PDF BibTeX XML Cite \textit{R. E. Caflisch} et al., Commun. Pure Appl. Math. 73, No. 10, 2104--2179 (2020; Zbl 1452.35146) Full Text: DOI
Kukavica, Igor; Wang, Weinan Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity. (English) Zbl 1452.35039 J. Dyn. Differ. Equations 32, No. 4, 2061-2077 (2020). MSC: 35B40 35Q35 PDF BibTeX XML Cite \textit{I. Kukavica} and \textit{W. Wang}, J. Dyn. Differ. Equations 32, No. 4, 2061--2077 (2020; Zbl 1452.35039) Full Text: DOI
Cao, Daomin; Wang, Guodong; Zhan, Weicheng Desingularization of vortices for two-dimensional steady Euler flows via the vorticity method. (English) Zbl 07269950 SIAM J. Math. Anal. 52, No. 6, 5363-5388 (2020). MSC: 76B47 76B03 35Q31 PDF BibTeX XML Cite \textit{D. Cao} et al., SIAM J. Math. Anal. 52, No. 6, 5363--5388 (2020; Zbl 07269950) Full Text: DOI
Flandoli, Franco; Olivera, Christian; Simon, Marielle Uniform approximation of 2 dimensional Navier-Stokes equation by stochastic interacting particle systems. (English) Zbl 07269949 SIAM J. Math. Anal. 52, No. 6, 5339-5362 (2020). MSC: 60H20 60H10 60F99 PDF BibTeX XML Cite \textit{F. Flandoli} et al., SIAM J. Math. Anal. 52, No. 6, 5339--5362 (2020; Zbl 07269949) Full Text: DOI
Varholm, Kristoffer Global bifurcation of waves with multiple critical layers. (English) Zbl 07263712 SIAM J. Math. Anal. 52, No. 5, 5066-5089 (2020). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q35 35B32 35C07 76B15 76U05 PDF BibTeX XML Cite \textit{K. Varholm}, SIAM J. Math. Anal. 52, No. 5, 5066--5089 (2020; Zbl 07263712) Full Text: DOI
Cheng, Wenguang; Xu, Tianzhou Local-in-space blow-up and symmetry of traveling wave solutions to a generalized two-component Dullin-Gottwald-Holm system. (English) Zbl 1450.35076 Monatsh. Math. 193, No. 3, 573-589 (2020). MSC: 35B44 35G55 35C07 PDF BibTeX XML Cite \textit{W. Cheng} and \textit{T. Xu}, Monatsh. Math. 193, No. 3, 573--589 (2020; Zbl 1450.35076) Full Text: DOI
Bedrossian, Jacob; He, Siming Inviscid damping and enhanced dissipation of the boundary layer for 2D Navier-Stokes linearized around Couette flow in a channel. (English) Zbl 1448.76057 Commun. Math. Phys. 379, No. 1, 177-226 (2020). MSC: 76D05 76D10 35Q30 PDF BibTeX XML Cite \textit{J. Bedrossian} and \textit{S. He}, Commun. Math. Phys. 379, No. 1, 177--226 (2020; Zbl 1448.76057) Full Text: DOI
Chu, Jifeng; Yang, Yanjuan Constant vorticity water flows in the equatorial \(\beta\)-plane approximation with centripetal forces. (English) Zbl 1448.35509 J. Differ. Equations 269, No. 11, 9336-9347 (2020). MSC: 35Q86 86A05 35Q31 35J60 76B15 PDF BibTeX XML Cite \textit{J. Chu} and \textit{Y. Yang}, J. Differ. Equations 269, No. 11, 9336--9347 (2020; Zbl 1448.35509) Full Text: DOI
Luo, Zhendong; Jiang, Wenrui The Crank-Nicolson finite spectral element method and numerical simulations for 2D non-stationary Navier-Stokes equations. (English) Zbl 1452.65278 Math. Methods Appl. Sci. 43, No. 5, 2276-2288 (2020). MSC: 65M70 65M60 65M06 65N35 65N12 76D05 35Q30 76M22 76M10 PDF BibTeX XML Cite \textit{Z. Luo} and \textit{W. Jiang}, Math. Methods Appl. Sci. 43, No. 5, 2276--2288 (2020; Zbl 1452.65278) Full Text: DOI
Debbi, Latifa Fractional stochastic active scalar equations generalizing the multi-dimensional quasi-geostrophic & 2D-Navier-Stokes equations: the general case. (English) Zbl 07246850 J. Math. Fluid Mech. 22, No. 4, Paper No. 54, 52 p. (2020). MSC: 58J65 60H15 35R11 35Q30 PDF BibTeX XML Cite \textit{L. Debbi}, J. Math. Fluid Mech. 22, No. 4, Paper No. 54, 52 p. (2020; Zbl 07246850) Full Text: DOI
Munteanu, Ionuţ; Röckner, Michael Global solutions for random vorticity equations perturbed by gradient dependent noise, in two and three dimensions. (English) Zbl 1447.60118 J. Evol. Equ. 20, No. 3, 1173-1194 (2020). MSC: 60H15 35Q30 76F20 76N10 PDF BibTeX XML Cite \textit{I. Munteanu} and \textit{M. Röckner}, J. Evol. Equ. 20, No. 3, 1173--1194 (2020; Zbl 1447.60118) Full Text: DOI
Yue, Gaocheng; Wang, Jintao Attractors of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping. (English) Zbl 1440.35249 Comput. Math. Appl. 80, No. 3, 434-452 (2020). MSC: 35Q30 35B41 76D05 PDF BibTeX XML Cite \textit{G. Yue} and \textit{J. Wang}, Comput. Math. Appl. 80, No. 3, 434--452 (2020; Zbl 1440.35249) Full Text: DOI
Roy, Anirban; Baskar, R. Hari Geometry of variably inclined inviscid MHD flows. (English) Zbl 1450.76043 Maity, Damodar (ed.) et al., Advances in fluid mechanics and solid mechanics. Proceedings of the 63rd congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Bangalore, India, December 20–23, 2018. Singapore: Springer. Lect. Notes Mech. Engin., 47-74 (2020). MSC: 76W05 PDF BibTeX XML Cite \textit{A. Roy} and \textit{R. H. Baskar}, in: Advances in fluid mechanics and solid mechanics. Proceedings of the 63rd congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Bangalore, India, December 20--23, 2018. Singapore: Springer. 47--74 (2020; Zbl 1450.76043) Full Text: DOI
Luk, Jonathan; Speck, Jared The hidden null structure of the compressible Euler equations and a prelude to applications. (English) Zbl 1441.35190 J. Hyperbolic Differ. Equ. 17, No. 1, 1-60 (2020). MSC: 35Q31 35L05 35L10 35L15 35L67 35L72 76N10 PDF BibTeX XML Cite \textit{J. Luk} and \textit{J. Speck}, J. Hyperbolic Differ. Equ. 17, No. 1, 1--60 (2020; Zbl 1441.35190) Full Text: DOI
Lokharu, E.; S. Seth, D.; Wahlén, E. An existence theory for small-amplitude doubly periodic water waves with vorticity. (English) Zbl 1446.35113 Arch. Ration. Mech. Anal. 238, No. 2, 607-637 (2020). MSC: 35Q31 35B32 35C07 76B15 76B47 35B40 PDF BibTeX XML Cite \textit{E. Lokharu} et al., Arch. Ration. Mech. Anal. 238, No. 2, 607--637 (2020; Zbl 1446.35113) Full Text: DOI
Grotto, Francesco Stationary solutions of damped stochastic 2-dimensional Euler’s equation. (English) Zbl 1447.35258 Electron. J. Probab. 25, Paper No. 69, 24 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q31 35R60 60H15 76M35 PDF BibTeX XML Cite \textit{F. Grotto}, Electron. J. Probab. 25, Paper No. 69, 24 p. (2020; Zbl 1447.35258) Full Text: DOI Euclid
Morgan, Scott; Davies, Christopher Linear stability eigenmodal analysis for steady and temporally periodic boundary-layer flow configurations using a velocity-vorticity formulation. (English) Zbl 1435.76023 J. Comput. Phys. 409, Article ID 109325, 17 p. (2020). MSC: 76D10 76E99 PDF BibTeX XML Cite \textit{S. Morgan} and \textit{C. Davies}, J. Comput. Phys. 409, Article ID 109325, 17 p. (2020; Zbl 1435.76023) Full Text: DOI
Sellountos, Euripides J. A single domain velocity-vorticity fast multipole boundary domain element method for three dimensional incompressible fluid flow problems. II. (English) Zbl 07214836 Eng. Anal. Bound. Elem. 114, 74-93 (2020). MSC: 76 65 PDF BibTeX XML Cite \textit{E. J. Sellountos}, Eng. Anal. Bound. Elem. 114, 74--93 (2020; Zbl 07214836) Full Text: DOI
Flandoli, Franco; Luo, Dejun Convergence of transport noise to Ornstein-Uhlenbeck for 2D Euler equations under the enstrophy measure. (English) Zbl 1440.35234 Ann. Probab. 48, No. 1, 264-295 (2020). MSC: 35Q30 35Q31 60H40 76D05 PDF BibTeX XML Cite \textit{F. Flandoli} and \textit{D. Luo}, Ann. Probab. 48, No. 1, 264--295 (2020; Zbl 1440.35234) Full Text: DOI Euclid
Lannes, D. Modeling shallow water waves. (English) Zbl 1442.35462 Nonlinearity 33, No. 5, R1-R57 (2020). MSC: 35Q86 35Q53 86A05 35L55 35L67 76B15 76-02 35Q31 PDF BibTeX XML Cite \textit{D. Lannes}, Nonlinearity 33, No. 5, R1--R57 (2020; Zbl 1442.35462) Full Text: DOI
Hoang, Vu; Radosz, Maria Singular solutions for nonlocal systems of evolution equations with vorticity stretching. (English) Zbl 1447.35268 SIAM J. Math. Anal. 52, No. 2, 2158-2178 (2020). Reviewer: Mikhail Turbin (Voronezh) MSC: 35Q35 35B65 76B99 35B44 35B40 35Q31 PDF BibTeX XML Cite \textit{V. Hoang} and \textit{M. Radosz}, SIAM J. Math. Anal. 52, No. 2, 2158--2178 (2020; Zbl 1447.35268) Full Text: DOI
Krieg, Michael; Mohseni, Kamran Transient pressure modeling in jetting animals. (English) Zbl 1437.92014 J. Theor. Biol. 494, Article ID 110237, 14 p. (2020). MSC: 92C10 76Z10 PDF BibTeX XML Cite \textit{M. Krieg} and \textit{K. Mohseni}, J. Theor. Biol. 494, Article ID 110237, 14 p. (2020; Zbl 1437.92014) Full Text: DOI
Pereira, F. S.; Grinstein, F. F.; Israel, D. Effect of the numerical discretization scheme in shock-driven turbulent mixing simulations. (English) Zbl 07196724 Comput. Fluids 201, Article ID 104487, 14 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{F. S. Pereira} et al., Comput. Fluids 201, Article ID 104487, 14 p. (2020; Zbl 07196724) Full Text: DOI
Emanuel, G. Vorticity and other properties associated with an unsteady, three-dimensional shock. (English) Zbl 1443.76147 J. Eng. Math. 121, 101-123 (2020). MSC: 76L05 PDF BibTeX XML Cite \textit{G. Emanuel}, J. Eng. Math. 121, 101--123 (2020; Zbl 1443.76147) Full Text: DOI
Chorfi, Nejmeddine; Abdelwahed, Mohamed; Berselli, Luigi C. On the analysis of a geometrically selective turbulence model. (English) Zbl 1437.35532 Adv. Nonlinear Anal. 9, 1402-1419 (2020). MSC: 35Q30 76F65 76D03 76D05 35B65 35D30 35D35 35A15 35B45 PDF BibTeX XML Cite \textit{N. Chorfi} et al., Adv. Nonlinear Anal. 9, 1402--1419 (2020; Zbl 1437.35532) Full Text: DOI
Lequeurre, Julien; Munnier, Alexandre Vorticity and stream function formulations for the 2D Navier-Stokes equations in a bounded domain. (English) Zbl 1433.76039 J. Math. Fluid Mech. 22, No. 2, Paper No. 15, 73 p. (2020). MSC: 76D05 76D17 PDF BibTeX XML Cite \textit{J. Lequeurre} and \textit{A. Munnier}, J. Math. Fluid Mech. 22, No. 2, Paper No. 15, 73 p. (2020; Zbl 1433.76039) Full Text: DOI
Hou, Fei; Yin, Huicheng On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases. (English) Zbl 1437.35458 Discrete Contin. Dyn. Syst. 40, No. 3, 1435-1492 (2020). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L45 35Q31 76N15 35L67 PDF BibTeX XML Cite \textit{F. Hou} and \textit{H. Yin}, Discrete Contin. Dyn. Syst. 40, No. 3, 1435--1492 (2020; Zbl 1437.35458) Full Text: DOI
Wang, Ying; Zhu, Min On the persistence and blow up for the generalized two-component Dullin-Gottwald-Holm system. (English) Zbl 1432.35031 Monatsh. Math. 191, No. 2, 377-394 (2020). MSC: 35B44 35G25 35Q35 35Q31 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{M. Zhu}, Monatsh. Math. 191, No. 2, 377--394 (2020; Zbl 1432.35031) Full Text: DOI
Chen, Qing Energy conservation in 2-D density-dependent Euler equations with regularity assumptions on the vorticity. (English) Zbl 1429.76036 J. Math. Fluid Mech. 22, No. 1, Paper No. 6, 13 p. (2020). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{Q. Chen}, J. Math. Fluid Mech. 22, No. 1, Paper No. 6, 13 p. (2020; Zbl 1429.76036) Full Text: DOI
Du, Lili; Wang, Xiaohui Steady compressible subsonic impinging flows with non-zero vorticity. (English) Zbl 1433.35251 J. Differ. Equations 268, No. 6, 2587-2621 (2020). MSC: 35Q31 35J25 76G25 76N10 35B65 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{L. Du} and \textit{X. Wang}, J. Differ. Equations 268, No. 6, 2587--2621 (2020; Zbl 1433.35251) Full Text: DOI
Iftimie, D.; Lopes Filho, M. C.; Nussenzveig Lopes, H. J. Weak vorticity formulation of the incompressible 2D Euler equations in bounded domains. (English) Zbl 07150262 Commun. Partial Differ. Equations 45, No. 2, 109-145 (2020). MSC: 76 35 86 PDF BibTeX XML Cite \textit{D. Iftimie} et al., Commun. Partial Differ. Equations 45, No. 2, 109--145 (2020; Zbl 07150262) Full Text: DOI
Hoang, Thi-Thao-Phuong; Leng, Wei; Ju, Lili; Wang, Zhu; Pieper, Konstantin Conservative explicit local time-stepping schemes for the shallow water equations. (English) Zbl 1451.65133 J. Comput. Phys. 382, 152-176 (2019). MSC: 65M22 86A05 65M06 65M08 PDF BibTeX XML Cite \textit{T.-T.-P. Hoang} et al., J. Comput. Phys. 382, 152--176 (2019; Zbl 1451.65133) Full Text: DOI
Jayanthi, S.; Kavitha, T. A modified compact numerical algorithm to solve 2D Navier-Stokes equation. (English) Zbl 1451.76082 Results Appl. Math. 3, Article ID 100065, 5 p. (2019). MSC: 76M20 76D05 76D17 PDF BibTeX XML Cite \textit{S. Jayanthi} and \textit{T. Kavitha}, Results Appl. Math. 3, Article ID 100065, 5 p. (2019; Zbl 1451.76082) Full Text: DOI
Bridges, Thomas J. The pressure boundary condition and the pressure as Lagrangian for water waves. (English) Zbl 07267951 Water Waves 1, No. 1, 131-143 (2019). MSC: 76B15 76M30 76B47 86A05 PDF BibTeX XML Cite \textit{T. J. Bridges}, Water Waves 1, No. 1, 131--143 (2019; Zbl 07267951) Full Text: DOI
Zhang, Zujin; Wang, Weihua; Yang, Xian An extension and simpler proof of Berselli-Córdoba’s geometric regularity condition for the Navier-Stokes system. (English) Zbl 1442.76049 Comput. Math. Appl. 77, No. 3, 765-769 (2019). MSC: 76D05 76D03 35Q30 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Comput. Math. Appl. 77, No. 3, 765--769 (2019; Zbl 1442.76049) Full Text: DOI
Abrashkin, Anatoly Unsteady Gerstner waves. (English) Zbl 1442.76020 Chaos Solitons Fractals 118, 152-158 (2019). MSC: 76B15 35C05 35Q35 PDF BibTeX XML Cite \textit{A. Abrashkin}, Chaos Solitons Fractals 118, 152--158 (2019; Zbl 1442.76020) Full Text: DOI
Gan, Lei; Deng, Dawen Growth of smooth solutions of the incompressible Euler equations with external force on the disk. (Chinese. English summary) Zbl 1449.35344 J. Hubei Univ., Nat. Sci. 41, No. 5, 463-469 (2019). MSC: 35Q31 35B65 PDF BibTeX XML Cite \textit{L. Gan} and \textit{D. Deng}, J. Hubei Univ., Nat. Sci. 41, No. 5, 463--469 (2019; Zbl 1449.35344) Full Text: DOI
Curtis, Christopher W.; Kalisch, Henrik Interaction of a free surface with a vortex patch. (English) Zbl 07222121 Wave Motion 90, 32-50 (2019). MSC: 76 35 PDF BibTeX XML Cite \textit{C. W. Curtis} and \textit{H. Kalisch}, Wave Motion 90, 32--50 (2019; Zbl 07222121) Full Text: DOI
Guyenne, Philippe HOS simulations of nonlinear water waves in complex media. (English) Zbl 1444.76080 Henry, David (ed.) et al., Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 – December 7, 2017. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 53-69 (2019). MSC: 76M22 76B15 86A05 86A40 PDF BibTeX XML Cite \textit{P. Guyenne}, in: Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017. Cham: Birkhäuser. 53--69 (2019; Zbl 1444.76080) Full Text: DOI
Golubkin, V. N.; Sizykh, G. B. Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave. (English. Russian original) Zbl 1445.76051 Russ. Math. 63, No. 12, 45-48 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 12, 52-56 (2019). MSC: 76L05 76N15 PDF BibTeX XML Cite \textit{V. N. Golubkin} and \textit{G. B. Sizykh}, Russ. Math. 63, No. 12, 45--48 (2019; Zbl 1445.76051); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 12, 52--56 (2019) Full Text: DOI
Privalova, Valentina V.; Prosviryakov, Evgeniĭ Yu.; Simonov, Mikhaĭl A. Nonlinear gradient flow of a vertical vortex fluid in a thin layer. (English) Zbl 1440.76035 Nelineĭn. Din. 15, No. 3, 271-283 (2019). MSC: 76F02 76F45 76M45 76R05 76U05 76D05 PDF BibTeX XML Cite \textit{V. V. Privalova} et al., Nelineĭn. Din. 15, No. 3, 271--283 (2019; Zbl 1440.76035) Full Text: DOI MNR
Elgindi, Tarek M.; Jeong, In-Jee Finite-time singularity formation for strong solutions to the axi-symmetric \(3D\) Euler equations. (English) Zbl 1436.35055 Ann. PDE 5, No. 2, Paper No. 16, 51 p. (2019). MSC: 35B44 35A20 35Q31 35B07 PDF BibTeX XML Cite \textit{T. M. Elgindi} and \textit{I.-J. Jeong}, Ann. PDE 5, No. 2, Paper No. 16, 51 p. (2019; Zbl 1436.35055) Full Text: DOI
Flandoli, Franco; Luo, Dejun Euler-Lagrangian approach to 3D stochastic Euler equations. (English) Zbl 1435.35290 J. Geom. Mech. 11, No. 2, 153-165 (2019). MSC: 35Q31 76B03 76B47 35R60 35A01 35A02 PDF BibTeX XML Cite \textit{F. Flandoli} and \textit{D. Luo}, J. Geom. Mech. 11, No. 2, 153--165 (2019; Zbl 1435.35290) Full Text: DOI
Troshkin, O. V. On smooth vortex catastrophe of uniqueness for stationary flows of an ideal fluid. (English. Russian original) Zbl 1441.76029 Comput. Math. Math. Phys. 59, No. 10, 1742-1752 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 10, 1803-1814 (2019). MSC: 76B47 76B03 35Q31 PDF BibTeX XML Cite \textit{O. V. Troshkin}, Comput. Math. Math. Phys. 59, No. 10, 1742--1752 (2019; Zbl 1441.76029); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 10, 1803--1814 (2019) Full Text: DOI
Zhang, Zujin; Wang, Weihua; Zhou, Yong Global regularity criterion for the Navier-Stokes equations based on the direction of vorticity. (English) Zbl 1434.35073 Math. Methods Appl. Sci. 42, No. 18, 7126-7134 (2019). MSC: 35Q30 35B65 76D03 76D17 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Math. Methods Appl. Sci. 42, No. 18, 7126--7134 (2019; Zbl 1434.35073) Full Text: DOI
Wetzel, Alfredo N.; Smith, Leslie M.; Stechmann, Samuel N.; Martin, Jonathan E. Balanced and unbalanced components of moist atmospheric flows with phase changes. (English) Zbl 1428.86016 Chin. Ann. Math., Ser. B 40, No. 6, 1005-1038 (2019). MSC: 86A10 86A08 35R05 35Q86 PDF BibTeX XML Cite \textit{A. N. Wetzel} et al., Chin. Ann. Math., Ser. B 40, No. 6, 1005--1038 (2019; Zbl 1428.86016) Full Text: DOI
Giga, Yoshikazu; Gu, Zhongyang; Hsu, Pen-Yuan Continuous alignment of vorticity direction prevents the blow-up of the Navier-Stokes flow under the no-slip boundary condition. (English) Zbl 1447.35246 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111579, 11 p. (2019). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q30 76D05 35B65 35B35 PDF BibTeX XML Cite \textit{Y. Giga} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111579, 11 p. (2019; Zbl 1447.35246) Full Text: DOI
Li, Siran Geometric regularity criteria for incompressible Navier-Stokes equations with Navier boundary conditions. (English) Zbl 1427.35181 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 202-235 (2019). MSC: 35Q30 76D05 35J08 35D30 35B65 76D10 76D17 PDF BibTeX XML Cite \textit{S. Li}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 202--235 (2019; Zbl 1427.35181) Full Text: DOI arXiv
Rosensteel, George Differential geometry of collective models. (English) Zbl 1427.53113 AIMS Math. 4, No. 2, 215-230 (2019). MSC: 53Z05 70F25 81T13 PDF BibTeX XML Cite \textit{G. Rosensteel}, AIMS Math. 4, No. 2, 215--230 (2019; Zbl 1427.53113) Full Text: DOI
Barsukow, Wasilij; Hohm, Jonathan; Klingenberg, Christian; Roe, Philip L. The active flux scheme on Cartesian grids and its low Mach number limit. (English) Zbl 1442.65190 J. Sci. Comput. 81, No. 1, 594-622 (2019). MSC: 65M08 65M06 35L05 65M12 35L65 35L45 76Q05 PDF BibTeX XML Cite \textit{W. Barsukow} et al., J. Sci. Comput. 81, No. 1, 594--622 (2019; Zbl 1442.65190) Full Text: DOI arXiv
Kundu, Abhishek; De, Sudipta High resolution numerical simulation of a shock-accelerated refrigerant-22 bubble. (English) Zbl 07124628 Comput. Fluids 193, Article ID 104289, 14 p. (2019). MSC: 76T10 76L05 76E17 76M12 76M20 PDF BibTeX XML Cite \textit{A. Kundu} and \textit{S. De}, Comput. Fluids 193, Article ID 104289, 14 p. (2019; Zbl 07124628) Full Text: DOI
Anaya, V.; Bouharguane, A.; Mora, D.; Reales, C.; Ruiz-Baier, R.; Seloula, N.; Torres, H. Analysis and approximation of a vorticity-velocity-pressure formulation for the Oseen equations. (English) Zbl 1428.65075 J. Sci. Comput. 80, No. 3, 1577-1606 (2019). MSC: 65N30 65N12 76D07 65N15 76M10 PDF BibTeX XML Cite \textit{V. Anaya} et al., J. Sci. Comput. 80, No. 3, 1577--1606 (2019; Zbl 1428.65075) Full Text: DOI
Ravnik, J.; Šušnjara, A.; Tibaut, J.; Poljak, D.; Cvetković, M. Stochastic modelling of nanofluids using the fast boundary-domain integral method. (English) Zbl 07110386 Eng. Anal. Bound. Elem. 107, 185-197 (2019). MSC: 80 76 PDF BibTeX XML Cite \textit{J. Ravnik} et al., Eng. Anal. Bound. Elem. 107, 185--197 (2019; Zbl 07110386) Full Text: DOI
Sellountos, Euripides J. A single domain velocity-vorticity fast multipole boundary domain element method for two dimensional incompressible fluid flow problems. (English) Zbl 07110348 Eng. Anal. Bound. Elem. 106, 359-370 (2019). MSC: 76 74 PDF BibTeX XML Cite \textit{E. J. Sellountos}, Eng. Anal. Bound. Elem. 106, 359--370 (2019; Zbl 07110348) Full Text: DOI
Bedrossian, Jacob; Coti Zelati, Michele; Vicol, Vlad Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. (English) Zbl 1428.35321 Ann. PDE 5, No. 1, Paper No. 4, 192 p. (2019). MSC: 35Q31 35B40 76B47 PDF BibTeX XML Cite \textit{J. Bedrossian} et al., Ann. PDE 5, No. 1, Paper No. 4, 192 p. (2019; Zbl 1428.35321) Full Text: DOI arXiv
Wei, Dongyi; Zhang, Zhifei; Zhao, Weiren Linear inviscid damping and vorticity depletion for shear flows. (English) Zbl 1428.35336 Ann. PDE 5, No. 1, Paper No. 3, 101 p. (2019). MSC: 35Q31 35B40 76B47 PDF BibTeX XML Cite \textit{D. Wei} et al., Ann. PDE 5, No. 1, Paper No. 3, 101 p. (2019; Zbl 1428.35336) Full Text: DOI arXiv
Krishnamurthy, Vikas S. The vorticity equation on a rotating sphere and the shallow fluid approximation. (English) Zbl 1447.76039 Discrete Contin. Dyn. Syst. 39, No. 11, 6261-6276 (2019). MSC: 76U05 76B47 76U60 PDF BibTeX XML Cite \textit{V. S. Krishnamurthy}, Discrete Contin. Dyn. Syst. 39, No. 11, 6261--6276 (2019; Zbl 1447.76039) Full Text: DOI
Röckner, Michael; Zhu, Rongchan; Zhu, Xiangchan A remark on global solutions to random 3D vorticity equations for small initial data. (English) Zbl 1420.60087 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4021-4030 (2019). MSC: 60H15 82C28 PDF BibTeX XML Cite \textit{M. Röckner} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4021--4030 (2019; Zbl 1420.60087) Full Text: DOI arXiv
Prusov, V. A.; Doroshenko, A. Yu.; Sologub, T. A. Atmospheric processes in urban area elements. (English. Russian original) Zbl 07096969 Cybern. Syst. Anal. 55, No. 1, 90-108 (2019); translation from Kibern. Sist. Anal. 2019, No. 1, 106-126 (2019). MSC: 86A10 PDF BibTeX XML Cite \textit{V. A. Prusov} et al., Cybern. Syst. Anal. 55, No. 1, 90--108 (2019; Zbl 07096969); translation from Kibern. Sist. Anal. 2019, No. 1, 106--126 (2019) Full Text: DOI
Badsi, Mehdi Study of an asymptotic preserving scheme for the quasi neutral Euler-Boltzmann model in the drift regime. (English) Zbl 07096603 ESAIM, Math. Model. Numer. Anal. 53, No. 2, 701-728 (2019). MSC: 65M08 65M06 65M12 65Z05 35B50 35Q20 35Q31 82D10 PDF BibTeX XML Cite \textit{M. Badsi}, ESAIM, Math. Model. Numer. Anal. 53, No. 2, 701--728 (2019; Zbl 07096603) Full Text: DOI
Garat, Alcides Euler observers for the perfect fluid without vorticity. (English) Zbl 1418.76044 Z. Angew. Math. Phys. 70, No. 4, Paper No. 119, 11 p. (2019). MSC: 76M60 83C05 83C10 83C20 85A30 PDF BibTeX XML Cite \textit{A. Garat}, Z. Angew. Math. Phys. 70, No. 4, Paper No. 119, 11 p. (2019; Zbl 1418.76044) Full Text: DOI
Gorshkov, A. V. Associated Weber-Orr transform, Biot-Savart law and explicit form of the solution of 2D Stokes system in exterior of the disc. (English) Zbl 1418.76024 J. Math. Fluid Mech. 21, No. 3, Paper No. 41, 14 p. (2019). MSC: 76D07 33C10 PDF BibTeX XML Cite \textit{A. V. Gorshkov}, J. Math. Fluid Mech. 21, No. 3, Paper No. 41, 14 p. (2019; Zbl 1418.76024) Full Text: DOI
Anaya, Verónica; Mora, David; Reales, Carlos; Ruiz-Baier, Ricardo Vorticity-Pressure formulations for the Brinkman-Darcy coupled problem. (English) Zbl 1416.76092 Numer. Methods Partial Differ. Equations 35, No. 2, 528-544 (2019). MSC: 76M10 65N30 65N15 76S05 35Q35 PDF BibTeX XML Cite \textit{V. Anaya} et al., Numer. Methods Partial Differ. Equations 35, No. 2, 528--544 (2019; Zbl 1416.76092) Full Text: DOI
Lokharu, E.; Wahlén, E. A variational principle for three-dimensional water waves over Beltrami flows. (English) Zbl 07081203 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 184, 193-209 (2019). MSC: 34 PDF BibTeX XML Cite \textit{E. Lokharu} and \textit{E. Wahlén}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 184, 193--209 (2019; Zbl 07081203) Full Text: DOI
Basu, Biswajit On some properties of velocity field for two dimensional rotational steady water waves. (English) Zbl 1418.35299 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 184, 17-34 (2019). MSC: 35Q35 35J15 PDF BibTeX XML Cite \textit{B. Basu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 184, 17--34 (2019; Zbl 1418.35299) Full Text: DOI
Martin, Calin Iulian; Rodríguez-Sanjurjo, Adrián Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. (English) Zbl 1415.35224 Discrete Contin. Dyn. Syst. 39, No. 9, 5149-5169 (2019). MSC: 35Q31 35Q35 76U05 76B15 76E05 76B47 PDF BibTeX XML Cite \textit{C. I. Martin} and \textit{A. Rodríguez-Sanjurjo}, Discrete Contin. Dyn. Syst. 39, No. 9, 5149--5169 (2019; Zbl 1415.35224) Full Text: DOI
Wheeler, Miles H. On stratified water waves with critical layers and Coriolis forces. (English) Zbl 1415.76086 Discrete Contin. Dyn. Syst. 39, No. 8, 4747-4770 (2019). MSC: 76B15 35Q35 35R35 PDF BibTeX XML Cite \textit{M. H. Wheeler}, Discrete Contin. Dyn. Syst. 39, No. 8, 4747--4770 (2019; Zbl 1415.76086) Full Text: DOI
Chu, Jifeng; Escher, Joachim Steady periodic equatorial water waves with vorticity. (English) Zbl 1415.76062 Discrete Contin. Dyn. Syst. 39, No. 8, 4713-4729 (2019). MSC: 76B15 35J60 47J15 76B03 PDF BibTeX XML Cite \textit{J. Chu} and \textit{J. Escher}, Discrete Contin. Dyn. Syst. 39, No. 8, 4713--4729 (2019; Zbl 1415.76062) Full Text: DOI
Abrashkin, Anatoly Wind generated equatorial gerstner-type waves. (English) Zbl 1415.76057 Discrete Contin. Dyn. Syst. 39, No. 8, 4443-4453 (2019). MSC: 76B15 86A05 74G05 70H03 PDF BibTeX XML Cite \textit{A. Abrashkin}, Discrete Contin. Dyn. Syst. 39, No. 8, 4443--4453 (2019; Zbl 1415.76057) Full Text: DOI
Sándor, Balázs; Torma, Péter; Szabó, K. Gábor; Zhang, Hong On the topography-driven vorticity production in shallow lakes. (English) Zbl 1415.35232 ANZIAM J. 61, No. 2, 148-160 (2019). MSC: 35Q35 76D17 PDF BibTeX XML Cite \textit{B. Sándor} et al., ANZIAM J. 61, No. 2, 148--160 (2019; Zbl 1415.35232) Full Text: DOI
Farhat, Aseel; Grujić, Zoran Local near-Beltrami structure and depletion of the nonlinearity in the 3D Navier-Stokes flows. (English) Zbl 1423.35294 J. Nonlinear Sci. 29, No. 2, 803-812 (2019). Reviewer: Jürgen Socolowsky (Brandenburg an der Havel) MSC: 35Q30 35B65 76D03 76D05 76F06 PDF BibTeX XML Cite \textit{A. Farhat} and \textit{Z. Grujić}, J. Nonlinear Sci. 29, No. 2, 803--812 (2019; Zbl 1423.35294) Full Text: DOI
Larios, Adam; Pei, Yuan; Rebholz, Leo Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. (English) Zbl 1433.35235 J. Differ. Equations 266, No. 5, 2435-2465 (2019). Reviewer: Yixian Gao (Changchun) MSC: 35Q30 35A01 35B44 35B65 35Q35 76D03 76D05 76D17 76N10 PDF BibTeX XML Cite \textit{A. Larios} et al., J. Differ. Equations 266, No. 5, 2435--2465 (2019; Zbl 1433.35235) Full Text: DOI arXiv
Elling, Volker Piecewise analytic bodies in subsonic potential flow. (English) Zbl 1415.76047 Commun. Partial Differ. Equations 44, No. 8, 691-707 (2019). MSC: 76B03 35Q35 PDF BibTeX XML Cite \textit{V. Elling}, Commun. Partial Differ. Equations 44, No. 8, 691--707 (2019; Zbl 1415.76047) Full Text: DOI arXiv
Kozlov, V.; Lokharu, E. Small-amplitude steady water waves with critical layers: non-symmetric waves. (English) Zbl 1420.35245 J. Differ. Equations 267, No. 7, 4170-4191 (2019). MSC: 35Q35 76B15 76B47 PDF BibTeX XML Cite \textit{V. Kozlov} and \textit{E. Lokharu}, J. Differ. Equations 267, No. 7, 4170--4191 (2019; Zbl 1420.35245) Full Text: DOI
Iulian Martin, Calin Constant vorticity water flows with full Coriolis term. (English) Zbl 1420.35244 Nonlinearity 32, No. 7, 2327-2336 (2019). Reviewer: Theodore Drivas (Princeton) MSC: 35Q35 76B15 76U05 76B47 35Q86 86A05 35R35 PDF BibTeX XML Cite \textit{C. Iulian Martin}, Nonlinearity 32, No. 7, 2327--2336 (2019; Zbl 1420.35244) Full Text: DOI
Choi, Kyudong; Denisov, Sergey On the growth of the support of positive vorticity for 2D Euler equation in an infinite cylinder. (English) Zbl 1414.76010 Commun. Math. Phys. 367, No. 3, 1077-1093 (2019). Reviewer: Hakan Adiguzel (Istanbul) MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{K. Choi} and \textit{S. Denisov}, Commun. Math. Phys. 367, No. 3, 1077--1093 (2019; Zbl 1414.76010) Full Text: DOI
Kluczek, Mateusz; Martin, Calin Iulian Dispersion relations for fixed mean-depth flows with two discontinuities in vorticity. (English) Zbl 1416.35208 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 181, 62-86 (2019). MSC: 35Q35 35D30 76B15 76E05 35B35 35R35 76B47 PDF BibTeX XML Cite \textit{M. Kluczek} and \textit{C. I. Martin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 181, 62--86 (2019; Zbl 1416.35208) Full Text: DOI
Kozlov, V.; Kuznetsov, N. A comparison theorem for super- and subsolutions of \(\nabla ^2 u + f (u) = 0\) and its application to water waves with vorticity. (English) Zbl 1429.35041 St. Petersbg. Math. J. 30, No. 3, 471-483 (2019) and Algebra Anal. 30, No. 3, 112-128 (2018). Reviewer: Pavel Burda (Praha) MSC: 35B50 35B05 76B15 35Q35 35J61 PDF BibTeX XML Cite \textit{V. Kozlov} and \textit{N. Kuznetsov}, St. Petersbg. Math. J. 30, No. 3, 471--483 (2019; Zbl 1429.35041) Full Text: DOI
Nakai, Kengo Direction of vorticity and a refined regularity criterion for the Navier-Stokes equations with fractional Laplacian. (English) Zbl 1416.35190 J. Math. Fluid Mech. 21, No. 2, Paper No. 21, 8 p. (2019). MSC: 35Q30 76D03 76D05 35R11 35D35 35B65 PDF BibTeX XML Cite \textit{K. Nakai}, J. Math. Fluid Mech. 21, No. 2, Paper No. 21, 8 p. (2019; Zbl 1416.35190) Full Text: DOI
Bala, Shujit Kumar; Saha, Litan Kumar; Anwar Hossain, M. Simulation of forced convection in a channel containing three obstacles over backward and forward facing steps by LBM. (English) Zbl 1419.80025 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 35, 19 p. (2019). Reviewer: Aleksey Syromyasov (Saransk) MSC: 80M25 76R05 65M75 65M06 80M20 PDF BibTeX XML Cite \textit{S. K. Bala} et al., Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 35, 19 p. (2019; Zbl 1419.80025) Full Text: DOI
Gustafsson, Björn; Putinar, Mihai A field-theoretic operator model and Cowen-Douglas class. (English) Zbl 07045462 Banach J. Math. Anal. 13, No. 2, 338-358 (2019). MSC: 47B20 PDF BibTeX XML Cite \textit{B. Gustafsson} and \textit{M. Putinar}, Banach J. Math. Anal. 13, No. 2, 338--358 (2019; Zbl 07045462) Full Text: DOI Euclid arXiv
Sbitnev, Valeriy I. Quaternion algebra on 4D superfluid quantum space-time: gravitomagnetism. (English) Zbl 1411.83033 Found. Phys. 49, No. 2, 107-143 (2019). MSC: 83C47 70H20 83F05 85A25 81Q05 PDF BibTeX XML Cite \textit{V. I. Sbitnev}, Found. Phys. 49, No. 2, 107--143 (2019; Zbl 1411.83033) Full Text: DOI
Brazovskii, S.; Kirova, N. From chiral anomaly to two-fluid hydrodynamics for electronic vortices. (English) Zbl 1411.82022 Ann. Phys. 403, 184-197 (2019). MSC: 82C10 81V10 PDF BibTeX XML Cite \textit{S. Brazovskii} and \textit{N. Kirova}, Ann. Phys. 403, 184--197 (2019; Zbl 1411.82022) Full Text: DOI
Beirão da Veiga, Hugo Navier-Stokes equations: some questions related to the direction of the vorticity. (English) Zbl 1411.35219 Discrete Contin. Dyn. Syst., Ser. S 12, No. 2, 203-213 (2019). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{H. Beirão da Veiga}, Discrete Contin. Dyn. Syst., Ser. S 12, No. 2, 203--213 (2019; Zbl 1411.35219) Full Text: DOI
Rodiac, Rémy Description of limiting vorticities for the magnetic 2D Ginzburg-Landau equations. (English) Zbl 1414.35218 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 3, 783-809 (2019). MSC: 35Q56 35B38 35A15 35R06 PDF BibTeX XML Cite \textit{R. Rodiac}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 3, 783--809 (2019; Zbl 1414.35218) Full Text: DOI arXiv
Ye, Zhuan On the global regularity of the 2D Oldroyd-B-type model. (English) Zbl 1415.76026 Ann. Mat. Pura Appl. (4) 198, No. 2, 465-489 (2019). Reviewer: Gelu Paşa (Bucureşti) MSC: 76A10 35Q35 PDF BibTeX XML Cite \textit{Z. Ye}, Ann. Mat. Pura Appl. (4) 198, No. 2, 465--489 (2019; Zbl 1415.76026) Full Text: DOI