×

A quadrilateral shell element with degree of freedom to represent thickness-stretch. (English) Zbl 1398.74426

Summary: This paper presents a quadrilateral shell element incorporating thickness-stretch, and demonstrates its performance in small and large deformation analyses for hyperelastic material and elastoplastic models. In terms of geometry, the proposed shell element is based on the formulation of the MITC4 shell element, with additional degrees of freedom to represent thickness-stretch. To consider the change in thickness, we introduce a displacement variation to the MITC4 shell element, in the thickness direction. After the thickness direction is expressed in terms of the director vectors that are defined at each midsurface node, additional nodes are placed along the thickness direction from the bottom surface to the top surface. The thickness-stretch is described by the movement of these additional nodes. The additional degrees of freedom are used to compute the transverse normal strain without assuming the plane stress condition. Hence, the three dimensional constitutive equation can be employed in the proposed formulation without any modification. By virtue of not imposing the plane stress condition, the surface traction is evaluated at the surface where the traction is applied, whereas it is assessed at the midsurface for conventional shell elements. Several numerical examples are presented to examine the fundamental performance of the proposed shell element. In particular, the proposed approach is capable of evaluating the change in thickness and the stress distribution when the effect of the surface traction is included. The behavior of the proposed shell element is compared with that of solid elements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74K25 Shells
74B20 Nonlinear elasticity
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2:419-451 · doi:10.1002/nme.1620020310
[2] Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267-304 · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[3] Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part I. three-dimensional shells. Comput Methods Appl Mech Eng 26:331-362 · Zbl 0461.73061 · doi:10.1016/0045-7825(81)90121-3
[4] Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part II. two-dimensional shells. Comput Methods Appl Mech Eng 27:167-181 · Zbl 0474.73093 · doi:10.1016/0045-7825(81)90148-1
[5] Hughes TJR, Carnoy E (1983) Nonlinear finite element shell formulation accounting for large membrane strains. Comput Methods Appl Mech Eng 39:69-82 · Zbl 0509.73083 · doi:10.1016/0045-7825(83)90074-9
[6] Liu WK, Law ES, Lam D, Belytschko T (1986) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55:259-300 · Zbl 0587.73113 · doi:10.1016/0045-7825(86)90056-3
[7] Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77-88 · doi:10.1108/eb023562
[8] Dvorkin EN, Pantuso D, Repetto EA (1995) A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput Methods Appl Mech Eng 125:17-40 · doi:10.1016/0045-7825(95)00767-U
[9] Dvorkin EN (1995) Nonlinear analysis of shells using the MITC formulation. Arch Comput Methods Eng 2:1-50 · doi:10.1007/BF02904994
[10] Eterovic AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30:1099-1114 · Zbl 0714.73035 · doi:10.1002/nme.1620300602
[11] Eberlein R, Wriggers P (1999) Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Comput Methods Appl Mech Eng 171:243-279 · Zbl 0957.74047 · doi:10.1016/S0045-7825(98)00212-6
[12] Dvorkin EN, Pantuso D, Repetto EA (1994) A finite element formulation for finite strain elasto-plastic analysis based on mixed interpolation of tensorial components. Comput Methods Appl Mech Eng 114:35-54 · doi:10.1016/0045-7825(94)90161-9
[13] Dvorkin EN, Assanelli AP (2000) Implementation and stability analysis of the QMITC-TLH elasto-plastic finite strain (2D) element formulation. Comput Struct 75:305-312 · doi:10.1016/S0045-7949(99)00138-8
[14] Prisch H (1995) A continuum-based shell theory for non-linear applications. Int J Numer Methods Eng 38:1855-1883 · Zbl 0826.73041 · doi:10.1002/nme.1620381105
[15] Carrera E, Brischetto S (2008) Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos Struct 82:549-562 · doi:10.1016/j.compstruct.2007.02.002
[16] Carrera E, Brischetto S (2008) Analysis of thickness locking in classical, refined and mixed theories for layered shells. Compos Struct 85:83-90 · doi:10.1016/j.compstruct.2007.10.009
[17] El-Abbasi N, Meguid SA (2000) A new shell element accounting for through-thickness deformation. Comput Methods Appl Mech Eng 189:841-862 · Zbl 1011.74068 · doi:10.1016/S0045-7825(99)00348-5
[18] Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness stretch variation abd a triangular shell finite element. Comput Mech 34:181-193 · Zbl 1138.74402 · doi:10.1007/s00466-004-0564-2
[19] Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37:2551-2568 · Zbl 0808.73046 · doi:10.1002/nme.1620371504
[20] Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595-1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[21] Andelfinger U, Ramm E (1993) EAS-elements for 2D, 3D, plate and shell structures and their equivalence to HR-elements. Int J Numer Methods Eng 36:1311-1337 · Zbl 0772.73071 · doi:10.1002/nme.1620360805
[22] Betsch P, Stein E (1995) An assumed strain approach avoiding artificial thickness straining a non-linear 4-node shell element. Commun Numer Methods Eng 11:899-909 · Zbl 0833.73051 · doi:10.1002/cnm.1640111104
[23] Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57-79 · Zbl 0861.73068 · doi:10.1016/0045-7825(95)00920-5
[24] Huettel C, Matzenmiller A (1999) Consistent discretization of thickness strains in thin shells including 3D-material models. Commun Numer Meth Eng 15:283-293 · Zbl 0931.74068 · doi:10.1002/(SICI)1099-0887(199904)15:4<283::AID-CNM244>3.0.CO;2-1
[25] Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135:201-209 · Zbl 0893.73072 · doi:10.1016/0045-7825(96)01037-7
[26] Hauptmann R, Schweizerhof K (1998) A systematic development of ’solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42:49-69 · Zbl 0917.73067 · doi:10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2
[27] Sansour C (1995) A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch Appl Mech 65:194-216 · Zbl 0827.73044 · doi:10.1007/s004190050012
[28] Chapelle D, Ferent A, Bathe KJ (2004) 3D-shell elements and their underlying mathematical model. Math Models Methods Appl Sci 14:105-142 · Zbl 1058.74078 · doi:10.1142/S0218202504003179
[29] Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Methods Appl Mech Eng 155:193-233 · Zbl 0970.74043 · doi:10.1016/S0045-7825(97)00149-7
[30] Klinkel S, Gruttmann F, Wagner W (1999) A continuum based three dimensional shell element for laminated structures. Comput Struct 71:43-62 · doi:10.1016/S0045-7949(98)00222-3
[31] Harnau M, Schweizerhof K (2002) About linear and quadratic “Solid-Shell” elements at large deformations. Comput Struct 80:805-817 · doi:10.1016/S0045-7949(02)00048-2
[32] Fontes Valente RA, Alves de Sousa RJ, Natal Jorge RM (2004) An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput Mech 34:38-52 · Zbl 1141.74367
[33] Klinkel S, Gruttmann F, Wagner W (2006) A robust non linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195:179-201 · Zbl 1106.74058 · doi:10.1016/j.cma.2005.01.013
[34] Klinkel S, Gruttmann F, Wagner W (2008) A mixed shell formulation accounting for thickness strains and finite strain 3D material models. Int J Numer Methods Eng 74:945-970 · Zbl 1158.74491 · doi:10.1002/nme.2199
[35] Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ’solid-shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Methods Eng 49:1121-1141 · Zbl 1048.74041 · doi:10.1002/1097-0207(20001130)49:9<1121::AID-NME130>3.0.CO;2-F
[36] Hauptmann R, Doll S, Harnau M, Schweizerhof K (2001) ’Solid-shell’ elements with linear and quadratic shape functions at large deformations with nearly incompressible materials. Comput Struct 79:1671-1685 · doi:10.1016/S0045-7949(01)00103-1
[37] Reese S (2007) A large deformation solid shell concept based on reducedintegration with hourglass stabilization. Int J Numer Methods Eng 69:1671-1716 · Zbl 1194.74469 · doi:10.1002/nme.1827
[38] Epstein M, Huttelmaier HP (1983) A finite element formulation for multilayered and thick plates. Comput Struct 16:645-650 · doi:10.1016/0045-7949(83)90113-X
[39] Huttelmaier HP, Epstein M (1985) A finite element formulation for multilayered and thick shells. Comput Struct 21:1181-1185 · doi:10.1016/0045-7949(85)90173-7
[40] Pinsky PM, Kim KO (1986) A multi-director formulation for nonlinear elastic-viscoelastic layered shells. Comput Struct 24:901-913 · Zbl 0604.73083 · doi:10.1016/0045-7949(86)90298-1
[41] Owen DRJ, Li ZH (1987) A refined analysis of laminated plates by finite element displacement methods—I. Fundamentals and static analysis. Comput Struct 26:907-914 · Zbl 0617.73072 · doi:10.1016/0045-7949(87)90107-6
[42] Vu-Quoc L, Deng H, Tan XG (2000) Geometrically-exact sandwich shells: the static case. Comput Methods Appl Mech Eng 189:167-203 · Zbl 0983.74074 · doi:10.1016/S0045-7825(99)00294-7
[43] Vu-Quoc L, Ebcioğlu IK (2000) Multilayer shells: geometrically-exact formulation of equations of motion. Int J Solids Struct 37:6705-6737 · Zbl 0986.74049 · doi:10.1016/S0020-7683(99)00190-0
[44] Chinosi C, Cinefra M, Croce LD, Carrera E (2013) Reissner’s mixed variational theorem toward MITC finite elements for multilayered plates. Compos Struct 99:443-452 · doi:10.1016/j.compstruct.2012.11.007
[45] Braun M, Bischoff M, Ramm E (1994) Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput Mech 15:1-18 · Zbl 0819.73042 · doi:10.1007/BF00350285
[46] El-Abbasi N, Meguid SA (2005) A continuum based thick shell element for large deformation analysis of layered composites. Int J Mech Mater Des 2:99-115 · doi:10.1007/s10999-005-4445-4
[47] Tan XG, Vu-Quoc L (2005) Efficient and accurate multilayer solid-shell element: non-linear materials at finite strain. Int J Numer Methods Eng 63:2124-2170 · Zbl 1134.74414 · doi:10.1002/nme.1360
[48] Rah K, Paepegem WV, Degrieck J (2013) A novel versatile multilayer hybrid stress solid-shell element. Comput Mech 51:825-841 · Zbl 1366.74074 · doi:10.1007/s00466-012-0749-z
[49] Kim DN, Bathe KJ (2008) A 4-node 3D-shell element to model shell surface tractions and incompressible behavior. Comput Struct 86:2027-2041 · doi:10.1016/j.compstruc.2008.04.019
[50] Sussman T, Bathe KJ (2013) 3D-shell elements for structures in large strains. Comput Struct 122:2-12 · doi:10.1016/j.compstruc.2012.12.018
[51] Yoon JW, Pourboghrat F, Chung K, Yang DY (2002) Springback prediction for sheet metal forming process using a 3D hybrid membrane/shell method. Int J Mech Sci 44:2133-2153 · Zbl 1087.74644 · doi:10.1016/S0020-7403(02)00165-0
[52] Iwata N, Tsutamori H, Niihara M, Ishikura H, Umezu Y, Murata A, Yogo Y (2007) Numerical prediction of springback shape of severely bent sheet metal. NUMIFORM 39:799-804
[53] Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413-1418 · Zbl 0437.73053 · doi:10.1002/nme.1620150914
[54] Simo JC, Rifai MS, Fox DD (1990) On a stress resultant geometrically exact shell model. part IV: variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81:91-126 · Zbl 0746.73016 · doi:10.1016/0045-7825(90)90143-A
[55] Chaudhuri RA, Hsia RL (1998) Effect of thickness on the large deformation behavior of laminated shells. Compos Struct 43:117-128
[56] Versino D, Mourad HM, Williams TO (2014) A global-local discontinuous Galerkin shell finite element for small-deformation analysis of multi-layered composites. Comput Methods Appl Mech Eng 271:269-295 · Zbl 1296.74130 · doi:10.1016/j.cma.2013.12.007
[57] Carrera E, Cinefra M, Lamberti A, Petrolo M (2015) Results on best theories for metallic and laminated shells including Layer-Wise models. Compos Struct 126:285-298 · doi:10.1016/j.compstruct.2015.02.027
[58] Bathe KJ (1996) Finite element procedure. Prentice-Hall Inc, Upper Saddle River
[59] Flory PJ (1961) Thermodynamic relations for high elastic materials. Tras Faraday Soc 57:829-838 · doi:10.1039/tf9615700829
[60] Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177-208 · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[61] Simo JC, Ortiz M (1985) A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput Methods Appl Mech Eng 49:221-245 · Zbl 0566.73035 · doi:10.1016/0045-7825(85)90061-1
[62] Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29:483-514 · Zbl 0724.73221 · doi:10.1002/nme.1620290304
[63] Betsch P, Stein E (1999) Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains. Comput Methods Appl Mech Eng 179:215-245 · Zbl 0965.74060 · doi:10.1016/S0045-7825(99)00063-8
[64] Lee EH, Liu DT (1967) Finite strain elastic-plastic theory with application to plane wave analysis. J Appl Phys 38:19-27 · doi:10.1063/1.1708953
[65] Yamada T, Kikuchi F, Wada A (1991) A 9-node mixed shell element based on the Hu-Washizu principle. Comput Mech 7:149-171 · Zbl 0735.73083 · doi:10.1007/BF00369976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.