×

Multiple normals configuration on an arbitrary manifold for viscous mesh generation. (English) Zbl 07769256

Summary: Marching normal calculation is considered the focus of the commonly used advancing layer method for viscous mesh generation, and the local configuration of multiple normals for complex corners locally is a rather complicated problem that has not been completely solved yet. In some extremely complex corners, even the advanced commercial software cannot generate positive prismatic meshes. To address this issue, this article presents a novel method to generate multiple normals on an arbitrary manifold. In the proposed method, we abstract the multiple normals displacement and topology connection calculation into a geometric problem on the unit sphere and prove that visible conditions can always be satisfied in finite multiple normals. After that, an engineering implementation is proposed, including an initial normal calculation using visual dependency graph analysis and spherical mesh optimization. The results show that our method can generate multiple normals at extremely complex corners where even advanced commercial software failed. The experiments of the industrial model proved the reliability and effectiveness of the first layer mesh generated by our method.
{© 2022 John Wiley & Sons, Ltd.}

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

MEGG3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ThompsonJ, SoniB, WeatherillN. Handbook of Grid Generation. CRC Press; 1998. doi:10.1201/9781420050349
[2] ItoY. Challenges in unstructured mesh generation for practical and efficient computational fluid dynamics simulations. Comput Fluids. 2013;85:47‐52. doi:10.1016/j.compfluid.2012.09.031 · Zbl 1290.76066
[3] KajishimaT, TairaK. Immersed boundary methods. Computational Fluid Dynamics. Springer; 2017:179‐205.
[4] BakerTJ. Mesh generation: art or science?Progress Aerosp Sci. 2005;41(1):29‐63. doi:10.1016/j.paerosci.2005.02.002
[5] LöhnerR, ParikhP. Generation of three‐dimensional unstructured grids by the advancing‐front method. Int J Numer Methods Fluids. 1988;8(10):1135‐1149. doi:10.1002/fld.1650081003 · Zbl 0668.76035
[6] BakerTJ. Automatic mesh generation for complex three‐dimensional regions using a constrained Delaunay triangulation. Eng Comput. 1989;5(3‐4):161‐175. doi:10.1007/BF02274210
[7] PirzadehSZ. Advanced unstructured grid generation for complex aerodynamic applications. AIAA J. 2010;48(5):904‐915. doi:10.2514/1.41355
[8] ChenJ, ZhengJ, ZhengY, XiaoZ, SiH, YaoY. Tetrahedral mesh improvement by shell transformation. Eng Comput. 2017;33(3):393‐414. doi:10.1007/s00366‐016‐0480‐z
[9] ChenJ, ZhaoD, HuangZ, ZhengY, GaoS. Three‐dimensional constrained boundary recovery with an enhanced Steiner point suppression procedure. Comput Struct. 2011;89(5‐6):455‐466. doi:10.1016/j.compstruc.2010.11.016
[10] GanY, LiuJ. Automatic and efficient hybrid viscous mesh generation based on clipped voronoi diagrams. Int J Numer Methods Eng. 2019;117(4):453‐471. doi:10.1002/nme.5963
[11] RogetB, SitaramanJ, LakshminarayanV, WissinkA. Prismatic mesh generation using minimum distance fields. Comput Fluids. 2020;200:104429. doi:10.1016/j.compfluid.2020.104429 · Zbl 1519.76100
[12] TomacM, EllerD. Towards automated hybrid‐prismatic mesh generation. Proc Eng. 2014;82:377‐389. doi:10.1016/j.proeng.2014.10.398
[13] WangZ, QuintanalJ, CorralR. Accelerating advancing layer viscous mesh generation for 3D complex configurations. Comput Aided Des. 2019;112:35‐46. doi:10.1016/j.cad.2018.11.002
[14] MarcumDL, AlauzetF, LoseilleA. On a robust boundary layer mesh generation process. Proceedings of the 55th AIAA Aerospace Sciences Meeting, AIAA Paper2017‐0585, Grapevine, TX; 2017:0585.
[15] AubryR, DeyS, MestreauEL, WilliamschenM, SzymczakW. Anisotropic sources for surface and volume boundary layer mesh generation. J Comput Phys. 2021;424:109855. doi:10.1016/j.jcp.2020.109855 · Zbl 07508460
[16] LoehnerR. Matching semi‐structured and unstructured grids for Navier‐Stokes calculations; Vol. 1, 1993:555‐564.
[17] PirzadehS.Viscous unstructured three‐dimensional grids by the advancing‐layers method. Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit; 1994:417.
[18] WangF, MareL. Hybrid meshing using constrained Delaunay triangulation for viscous flow simulations. Int J Numer Methods Eng. 2016;108(13):1667‐1685. doi:10.1002/nme.5272
[19] ItoY, ShihAM, SoniBK, NakahashiK. Multiple marching direction approach to generate high quality hybrid meshes. AIAA J. 2007;45(1):162‐167. doi:10.2514/1.23260
[20] AubryR, LöhnerR. On the ‘most normal’ normal. Commun Numer Methods Eng. 2008;24(12):1641‐1652. doi:10.1002/cnm.1056 · Zbl 1157.65328
[21] AubryR, MestreauEL, DeyS, KarameteBK, GaymanD. On the ‘most normal’ normal—Part 2. Finite Elements Anal Des. 2015;97:54‐63. doi:10.1016/j.finel.2015.01.005
[22] KallinderisY, WardS. Prismatic grid generation for three‐dimensional complex geometries. AIAA J. 1993;31(10):1850‐1856. doi:10.2514/3.11858 · Zbl 0798.76075
[23] LoseilleA, LöhnerR. Robust boundary layer mesh generation. Proceedings of the 21st International Meshing Roundtable. Springer; 2012:493‐511.
[24] KallinderisY, WardS. Prismatic grid generation with an efficient algebraic method for aircraft configurations. Proceedings of the 10th Applied Aerodynamics Conference; 1992.
[25] LöhnerR, CebralJ. Generation of non‐isotropic unstructured grids via directional enrichment. Int J Numer Methods Eng. 2000;49(1‐2):219‐232. doi:10.1002/1097‐0207(20000910/20)49:1/2<219::AID‐NME930>3.0.CO;2‐3 · Zbl 0970.76058
[26] GarimellaRV, ShephardMS. Boundary layer mesh generation for viscous flow simulations. Int J Numer Methods Eng. 2000;49:193‐218. · Zbl 0960.76074
[27] SharovD, LuoH, BaumJD, LöhnerR. Unstructured Navier‐Stokes grid generation at corners and ridges. Int J Numer Methods Fluids. 2003;43(6‐7):717‐728. doi:10.1002/fld.615 · Zbl 1032.76601
[28] ItoY, MurayamaM, YamamotoK, ShihAM, SoniBK. Efficient hybrid surface/volume mesh generation using suppressed marching‐direction method. AIAA J. 2013;51(6):1450‐1461. doi:10.2514/1.J052125
[29] AthanasiadisAN, DeconinckH. A folding/unfolding algorithm for the construction of semi‐structured layers in hybrid grid generation. Comput Methods Appl Mech Eng. 2005;194(48‐49):5051‐5067. doi:10.1016/j.cma.2004.11.024 · Zbl 1094.76050
[30] KimSJ, LeeDY, YangMY. Offset triangular mesh using the multiple normal vectors of a vertex. Comput‐Aided Des Appl. 2004;1(1‐4):285‐291. doi:10.1080/16864360.2004.10738269
[31] AubryR, LöhnerR. Generation of viscous grids at ridges and corners. Int J Numer Methods Eng. 2009;77(9):1247‐1289. doi:10.1002/nme.2446 · Zbl 1156.76432
[32] AubryR, DeyS, MestreauEL, KarameteBK. Boundary layer mesh generation on arbitrary geometries. Int J Numer Methods Eng. 2017;112(2):157‐173. doi:10.1002/nme.5514
[33] ParkS, JeongB, LeeJG, ShinH. Hybrid grid generation for viscous flow analysis. Int J Numer Methods Fluids. 2013;71(7):891‐909. doi:10.1002/fld.3691 · Zbl 1430.76373
[34] LiuJ, ChenYQ, SunSL. Small polyhedron reconnection for mesh improvement and its implementation based on advancing front technique. Int J Numer Methods Eng. 2009;79(8):1004‐1018. doi:10.1002/nme.2605 · Zbl 1171.74472
[35] AmentaN, BernM, EppsteinD. Optimal point placement for mesh smoothing. J Algorithms. 1999;30(2):302‐322. doi:10.1006/jagm.1998.0984 · Zbl 0919.65070
[36] YeH, LiuY, ChenB, et al. Hybrid grid generation for viscous flow simulations in complex geometries. Adv Aerodyn. 2020;2(2):17. doi:10.1186/s42774‐020‐00042‐x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.