×

Modeling the dynamic bending of rigid-plastic hybrid composite curvilinear plates with a rigid inclusion. (English. Russian original) Zbl 1458.74060

Mech. Solids 54, No. 5, 756-772 (2019); translation from Prikl. Mat. Mekh. 83, No. 1, 107-125 (2019).
Summary: A general method has been developed for calculating the dynamic behavior of rigid-plastic composite layered fibrous plates with a rigid inclusion and with the hinged or clamped arbitrary smooth non-concave curvilinear contour subject to a uniformly distributed short dynamic explosive loading of high-intensity. The distribution of layers is symmetric with respect to the middle surface, and in each layer there is a family of reinforcement curvilinear fibers in the directions parallel and normal to the plate contour. The structural model of the reinforcement layer with a one-dimensional stress state in the fibers is used. Depending on the loading amplitude, different types of plate deformation are possible. Based on the principle of virtual power in combination with the d’Alembert principle, the equations of dynamic deformation are derived and their implementation conditions analyzed. The analytical expressions for assessing the limiting loads, deformation time, and residual deflections of the plates are obtained. It is shown that the variation in the reinforcement parameters significantly affects both the loading capacity of such plates and the residual deflections. Examples of numerical solutions are provided.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74E30 Composite and mixture properties
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yankovskii, Ap, Viscoplastic dynamics of metallic composite shells of layered-fibrous structure under the action of loads of explosive type. I. Statement of the problem and method for solution, Mat. Metodi Fiz.-Mekh. Polya, 55, 2, 119-130 (2012) · Zbl 1274.74078
[2] Yankovskii, Ap, Using of explicit time-central difference method for numerical simulation of dynamic behavior of elasto-plastic flexible reinforced plates, Vychisl. Mekh. Sploshnykh Sred, 9, 3, 279-297 (2016)
[3] Popov, O.N., Malinovskii, A.P., Moiseenko, M.O., and Treputneva, T.A., State of problem on calculating structures’ heterogenous elements beyond the elastic limit, Vestn. Tomsk. Gos. Arkhit. Stroit. Univ., 2013, no. 4, pp. 127-142.
[4] Abrosimov, Na; Elesin, Av; Novosel’Tseva, Na, Numerical analysis of the effect of reinforcement structure on the dynamic behavior and ultimate deformability of composite shells of revolution, Mekh. Kompoz. Mater., 50, 2, 313-326 (2014)
[5] Qatu, Ms; Sullivan, Rw; Wang, W., Recent research advances on the dynamic analysis of composite shells: 2000-2009, Compos. Struct., 93, 14-31 (2010) · doi:10.1016/j.compstruct.2010.05.014
[6] Arora, H.; Linz, Pd; Dear, Jp, Damage and deformation in composite sandwich panels exposed to multiple and single explosive blasts, Int. J. Impact Eng., 104, 95-106 (2017) · doi:10.1016/j.ijimpeng.2017.01.017
[7] Jones, N., Some recent developments in the dynamic inelastic behavior of structures, Ships Offshore Struct., 1, 1, 37-44 (2006) · doi:10.1533/saos.2005.0007
[8] Hampson, Pr; Moatamedi, M., Review of composite structures subjected to dynamic loading, Int. J. Crashworthiness, 12, 4, 411-428 (2007) · doi:10.1080/13588260701483334
[9] Nemirovskii, Yv; Romanova, Tp, Dinamicheskoe soprotivlenie ploskikh plasticheskikh pregrad (2009), Novosibirsk: GEO, Novosibirsk
[10] Nemirovskii, Yu.V., Plasticity (strength) condition for a reinforced layer, Prikl. Mekh. Tekh. Fiz., 1969, no. 5, pp. 81-88. 10.1007/BF00907434
[11] Nemirovsky, Jv; Resnikoff, Bs, On limit equilibrium of reinforced slabs and effectiveness of their reinforcement, Arch. Inst. Inżynierii Lądowej, 21, 1, 57-67 (1975)
[12] Kelly, A.; Tyson, Wr, Tensile properties of fiber-reinforced metals: copper/tungsten and copper/molybdenum, J. Mech. Phys. Solids, 13, 6, 329-350 (1965) · doi:10.1016/0022-5096(65)90035-9
[13] Sarbaev, B.S., Analysis of carrying capacity of layered fibrous composites, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. “Mashinostr.”, 2000, no. 4, pp. 59-72.
[14] Sarbaev, B.S., The calculation of the lower boundary of the limit load for multilayered fiber composites under biaxial loading, Inzh. J.: Nauka Innovatsii, 2013, no. 7, pp. 856-1-13. http://engjournal.ru/catalog/machin/rocket/856.html.
[15] Rzhanitsyn, Ar, Predel’noe ravnovesie plastinok i obolochek (1983), Moscow: Nauka, Moscow
[16] Abrosimov, Na; Bazhenov, Vg, Nelineinye zadachi dinamiki kompozitnykh konstruktsii (2002), Nizhny Novgorod: National Research Lobachevsky State Univ. of Nizhny Novgorod, Nizhny Novgorod
[17] Nemirovskii, Yv; Romanova, Tp, Dynamic plastic deformation of curvilinear plates, Prikl. Mekh, 37, 12, 68-78 (2001) · Zbl 1051.74605
[18] Nemirovskii, Yv; Romanova, Tp, Dynamic plastic damage of simply and doubly connected elliptic plates, Prikl. Mekh. Tekh. Fiz., 43, 2, 142-154 (2002) · Zbl 1004.74066
[19] Nemirovskii, Yv; Romanova, Tp, Dynamic behavior of rigid-plastic sector plates, Prikl. Mekh, 40, 4, 93-101 (2004) · Zbl 1116.74397
[20] Romanova, Tp; Nemirovsky, Yv, Dynamic rigid-plastic deformation of arbitrarily shaped plates, J. Mech. Mater. Struct., 3, 2, 313-334 (2008) · doi:10.2140/jomms.2008.3.313
[21] Nemirovskii, Yv; Romanova, Tp, Dynamic deformation of a curved plate with a rigid insert, Prikl. Mekh. Tekh. Fiz., 47, 2, 126-138 (2006) · Zbl 1120.74035
[22] Nemirovskii, Yv; Romanova, Tp, Damaging dynamics of plastic reinforced metal-composite circular plates, 253-254 (2011), Tomsk: Tomsk State Univ., Tomsk
[23] Nemirovskii, Yv; Romanova, Tp, Dynamical flexure of reinforced perfect polygonal plates with hard washer caused by explosive load, 255-269 (2010), Voronezh: Voronezh State Univ., Voronezh
[24] Romanova, T.P., Modeling of dynamic behavior of mosaic-reinforced three-layer square plates, Probl. Prochn. Plast., 2016, no. 78 (2), pp. 145-155.
[25] Nemirovskii, Yu.V. and Yankovskii, A.P., Viscoplastic deformation of reinforced plates with varying thickness under explosive loads, Prikl. Mekh., 2008, no. 2, pp. 85-98. 10.1007/s10778-008-0030-5
[26] Nemirovskii, Yv; Yankovskii, Ap, Visco-plastic dynamics of layered fiber plates of variable thickness under the action of an explosive type of load, Mekh. Kompoz. Mater. Konstr., 12, 4, 484-501 (2006)
[27] Erkhov, Mi, Teoriya ideal’no plasticheskikh tel i konstruktsii (1978), Moscow: Nauka, Moscow
[28] Zhou, D.; Lo, Sh; Cheung, Yk; Au, Ftk, 3-D vibration analysis of generalized super elliptical plates using Chebyshev-Ritz method, Int. J. Solids Struct., 41, 4697-4712 (2004) · Zbl 1079.74554 · doi:10.1016/j.ijsolstr.2004.02.045
[29] Carrera, E.; Brischetto, S., A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates, Appl. Mech. Rev., 62, 1, 010803 (2009) · doi:10.1115/1.3013824
[30] Panin, Vf; Gladkov, Ya, Konstruktsii s zapolnitelem (1991), Moscow: Mashinostroenie, Moscow
[31] Rezaeifard, M.; Salami, Sj; Dehkordi, Mb; Sadighi, M., A new nonlinear model for studying a sandwich panel with thin composite faces and elastic-plastic core, Thin-Walled Struct., 107, 119-137 (2016) · doi:10.1016/j.tws.2016.06.012
[32] Fatt, Msh; Palla, L., Analytical modeling of composite sandwich panels under blast loads, J. Sandwich Struct. Mater., 11, 4, 357-380 (2009) · doi:10.1177/1099636209104515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.