×

Flow and heat transfer affected by variable properties of nanofluids in natural-convection over a vertical cone in porous media. (English) Zbl 1391.76740

Summary: This paper attempts to theoretically analyze the effects of nanoparticles concentration gradient on the natural convection boundary layer flow of nanofluids around a vertical cone placed in a porous medium. The slip of nanoparticles is because of the Brownian motion and thermophoresis forces. The viscosity and the thermal conductivity of nanofluid are considered as a function of local volume fraction of nanoparticles. Two mathematical processes are performed. The first step is the simplification of the governing partial differential equations using appropriate similarity variables. The second step is the numerical solution of the obtained ordinary differential equations. Furthermore, based on the Buongiorno’s model, the new definition of the reduced Nusselt and Sherwood numbers is presented in details. The results reveal that the reduced Nusselt number would increase with increase of viscosity parameter and decrease with an increase of thermal conductivity parameter.

MSC:

76S05 Flows in porous media; filtration; seepage
76R10 Free convection
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Das, S. K.; Choi, S. U.S.; Yu, W.; Pradeep, T., Nanofluids - science and technology, (2007), John Wiley & Sons Publishers Hoboken
[2] Khanafer, K.; Vafai, K.; Lightstone, M., Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int J Heat Mass Transfer, 46, 3639-3653, (2003) · Zbl 1042.76586
[3] Hwang, K. S.; Jang, S. P.; Choi, S. U.S., Flow and convective heat transfer characteristics of water-based al_{2}O_{3} nanofluids in fully developed laminar flow regime, Int J Heat Mass Transfer, 52, 193-199, (2009) · Zbl 1156.80333
[4] Yu, W.; France, D. M.; Routbort, J. L., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng, 29, 432-460, (2008)
[5] Daungthongsuk, W.; Wongwises, S., A critical review of convective heat transfer of nanofluids, Renew Sustain Energy Rev, 11, 797-817, (2007)
[6] Khanafer, K.; Vafai, K., A critical synthesis of thermophysical characteristics of nanofluids, Int J Heat Mass Transfer, 54, 4410-4428, (2011) · Zbl 1227.80022
[7] Kakaç, S.; Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, Int J Heat Mass Transfer, 52, 3187-3196, (2009) · Zbl 1167.80338
[8] Buongiorno, J., Convective transport in nanofluids, J Heat Transfer, 128, 240-250, (2006)
[9] Nield, D. A.; Kuznetsov, A. V., The cheng-minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int J Heat Mass Transfer, 52, 5792-5795, (2009) · Zbl 1177.80046
[10] Gorla, R. S.R.; Chamkha, A., Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid, J Mod Phys, 2, 62-71, (2011)
[11] Gorla, R. S.R.; Chamkha, A. J.; Rashad, A. M., Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid - natural convection dominated regime, Nanoscale Res Lett, 6, 1-9, (2011)
[12] Noghrehabadi, A.; Behseresht, A.; Ghalambaz, M.; Behseresht, J., Natural-convection flow of nanofluids over vertical cone embedded in non-Darcy porous media, J Thermophys Heat Transfer, 27, 334-341, (2013) · Zbl 1376.76067
[13] Noghrehabadi, A.; Behseresht, A.; Ghalambaz, M., Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux, Appl Math Mech, 34, 669-686, (2013) · Zbl 1376.76067
[14] Rashad, A. M.; El-Hakiem, M. A.; Abdou, M. M.M., Natural convection boundary layer of a non-Newtonian fluid about a permeable vertical cone embedded in a porous medium saturated with a nanofluid, Compu Math Appl, 62, 3140-3151, (2011) · Zbl 1232.76004
[15] Chandrasekar, M.; Suresh, S., A review on the mechanisms of heat transport in nanofluids, Heat Transfer Eng, 30, 1136-1150, (2009)
[16] Nield, D. A.; Bejan, A., Convection in porous media, (2006), Springer, New New York · Zbl 1256.76004
[17] Chin, K. E.; Nazar, R.; Arifin, N. M.; Pop, I., Effect of variable viscosity on mixed convection boundary layer flow over a vertical surface embedded in a porous medium, Int Commun Heat Mass Transfer, 34, 464-473, (2007)
[18] Kumari, M., Effect of variable viscosity on non-Darcy free or mixed convection flow on a horizontal surface in a saturated porous medium, Int Commun Heat Mass Transfer, 28, 723-732, (2001)
[19] Hossain, M. A.; Munir, M. S.; Pop, I., Natural convection flow of viscous fluid with viscosity inversely proportional to linear function of temperature from a vertical cone, Int J Therm Sci, 40, 366-371, (2001)
[20] Shit, G. C.; Haldar, R., Effects of thermal radiation on MHD viscous fluid flow and heat transfer over nonlinear shrinking porous sheet, Appl Math Mech, 32, 677-688, (2011) · Zbl 1237.76214
[21] Prasad, K. V.; Dulal Pal, V.; Umesh, N. S.; Rao, P., The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet, Commun Nonlinear Sci Numer Simul, 15, 331-344, (2010) · Zbl 1221.76238
[22] Chaim, T. C., Heat transfer with variable thermal conductivity in a stagnation-point flow towards a stretching sheet, Int Commun Heat Mass Transfer, 23, 239-248, (1996)
[23] Oztop, H. F.; Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int J Heat Mass Transfer, 29, 1326-1336, (2008)
[24] Chamkha, A.; Gorla, R. S.R.; Ghodeswar, K., Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid, Transp Porous Med, 86, 13-22, (2011)
[25] Wang, X.-Q.; Mujumdar, A. S., A review on nanofluids - part I: theoretical and numerical investigations, Br J Chem Eng, 25, 613-630, (2008)
[26] Nadeem, S.; Ali, M., Analytical solutions for pipe flow of a fourth grade fluid with Reynolds and vogel’s models of viscosities, Commun Nonlinear Sci Numer Simul, 14, 2073-2090, (2009) · Zbl 1221.76020
[27] Nadeem, S.; Akber, N. S., Effects of heat transfer on the peristaltic transport of MHD newtonian fluid with variable viscosity: application of Adomian decomposition method, Commun Nonlinear Sci Numer Simul, 14, 3844-3855, (2009)
[28] Nadeem, S.; Hayat, T.; Akber, N. S.; Malik, M. Y., On the influence of heat transfer in peristalsis with variable viscosity, Int J Heat Mass Transfer, 52, 4722-4730, (2009) · Zbl 1176.80030
[29] Mooney, M., The viscosity of a concentrated suspension of spherical particles, J Colloid Sci, 6, 162-170, (1951)
[30] Eilers, V. H., Die viskocitat von emulsionen hochviskoser stoffe als funktion der konzentration, Kolloid-Zeitschrift, 97, 313-321, (1941)
[31] Ma, Kun-Quan; Liu, J., Nanoliquid-metal fluid as ultimate coolant, Phys Lett, 361, 252-256, (2007)
[32] Nassan, T. H.; Zeinali Heris, S.; Noie, S. A., A comparison of experimental heat transfer characteristics for al_{2}O_{3}/water and cuo/water nanofluids in square cross-section duct, Int Commun Heat Mass Transfer, 37, 924-928, (2010)
[33] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE suite, SIAM J Scien Comput, 18, 1-22, (1997) · Zbl 0868.65040
[34] Dennis JE. Nonlinear least-squares. In: Jacobs D, editor. State of the art in numerical analysis. Academic Press; 1977. p. 269-312.
[35] Cheng, P.; Le, T. T.; Pop, I., Natural convection of a Darcian fluid about a cone, Int Commun Heat Mass Transfer, 12, 705-717, (1985)
[36] Yih, K. A., The effect of uniform lateral mass flux on free convection about a vertical cone embedded in a saturated porous media, Int Commun Heat Mass Transfer, 24, 1195-1205, (1997)
[37] Behseresht, A.; Noghrehabadi, A.; Ghalambaz, M., Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties, Chem. Eng. Res. Des., (2013) · Zbl 1376.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.