×

Two-dimensional cascadic finite element computations of combustion problems. (English) Zbl 0954.76044

Summary: We present an integrated time-space adaptive finite element method for solving systems of two-dimensional nonlinear parabolic systems in complex geometry. The partial differential system is first discretized in time using a single linear implicit Runge-Kutta method of order three. Local time errors for the step size control are defined by an embedding strategy. These errors are used to propose a new time step by a PI controller algorithm. A multilevel finite element method with piecewise linear functions on unstructured triangular meshes is subsequently applied for the discretization in space. The local error estimate of the finite element solution steering the adaptive mesh refinement is obtained solving local problems with quadratic trial functions located essentially at the edges of the triangulation. This two-fold adaptivity successfully ensures an a priori prescribed tolerance of the solution. We apply the devised method to laminar gaseous combustion and to solid-solid alloying reactions. We demonstrate that the employed error estimation and adaption strategies generate an efficient algorithm.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
92E20 Classical flows, reactions, etc. in chemistry
80A25 Combustion

Software:

RODAS; Kaskade7
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Peters, N.; Warnatz, J., Numerical Methods in Laminar Flame Propagation. Numerical Methods in Laminar Flame Propagation, Notes on numerical fluid mechanics, Vol. 6 (1982), Vieweg) · Zbl 0536.00017
[2] Dervieux, A.; Larrouturou, B.; Peyret, R., On some adaptive numerical approaches of thin flame propagation problems, Comput. Fluids, 17, 39-60 (1989) · Zbl 0664.76142
[3] Fröhlich, J.; Peyret, R., A spectral algorithm for low Mach number combustion, Comput. Methods Appl. Mech. Engrg., 90, 631-642 (1991)
[4] Denet, B.; Haldenwang, P., Numerical study of thermal-diffusive instability of premixed flames, Combust. Sci. Tech., 86, 199-221 (1992)
[5] Hairer, E.; Wanner, G., Solving ordinary differential equations II, Stiff and differential-algebraic problems, (Springer Series in Computational Mathematics, Vol. 14 (1991), Springer-Verlag) · Zbl 0729.65051
[6] Babuška, I.; Suri, M., The p and h-p versions of the Finite Element Method, An overview, Comput. Methods Appl. Mech. Engrg., 80, 5-26 (1990) · Zbl 0731.73078
[7] Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, 67-83 (1994) · Zbl 0811.65089
[8] Deuflhard, P.; Lang, J.; Nowak, U., Adaptive algorithm in dynamical process simulation, (Proc. 8th ECMI Conference. Proc. 8th ECMI Conference, Sept. 1994, Kaiserslautern (1996), Teubner)
[9] Deuflhard, P.; Leinen, P.; Yserentant, H., Concepts of an adaptive hierarchical finite element code, IMPACT Comput. Sci. Engrg., 1, 3-35 (1989) · Zbl 0706.65111
[10] Bieterman, M.; Babuška, I., The finite element method for parabolic equations I: A posteriori error estimates, Numer. Math., 40, 339-371 (1982) · Zbl 0534.65072
[11] Adjerid, S.; Flaherty, J. E., Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems, Numer. Math., 53, 183-198 (1988) · Zbl 0628.65104
[12] Moore, P. K., A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal., 31, 149-169 (1994) · Zbl 0798.65089
[13] Bornemann, F. A., An adaptive multilevel approach to parabolic equations III. 2D error estimation and multilevel preconditioning, IMPACT Comput. Sci. Engrg., 4, 1-45 (1992) · Zbl 0745.65055
[14] Lang, J.; Walter, A., A finite element method adaptive in space and time for nonlinear reaction-diffusion systems, IMPACT Comput. Sci. Engrg., 4, 269-314 (1992) · Zbl 0796.65104
[15] Lang, J., Two-dimensional fully adaptive solutions of reaction-diffusion equations, Appl. Numer. Math., 18, 223-240 (1995) · Zbl 0846.65044
[16] Lang, J., High-resolution selfadaptive computations on chemical reaction-diffusion problems with internal boundaries, Chem. Engrg. Sci., 51, 1055-1070 (1996)
[17] Fröhlich, J.; Schneider, K., An adaptive wavelet-vaguelette algorithm for the solution of nonlinear PDEs, J. Comput. Phys., 130, 174-190 (1997) · Zbl 0868.65067
[18] Roche, M., Rosenbrock methods for differential algebraic equations, Numer. Math., 52, 45-63 (1988) · Zbl 0613.65076
[19] Gustafsson, K., Control of error and convergence in ODE solvers, (Ph.D. Thesis (1992), Department of Automatic Control, Lund Institut of Technology: Department of Automatic Control, Lund Institut of Technology Lund, Sweden)
[20] Babuška, I.; Aziz, A. K., On the angle condition in the finite element method, SIAM J. Numer. Anal., 13, 214-226 (1976) · Zbl 0324.65046
[21] Erdmann, B.; Lang, J.; Roitzsch, R., KASKADE Manual—Version 2.0, (Technical Report TR 93-5 (1993), Konrad-Zuse-Zentrum für Informationstechnik: Konrad-Zuse-Zentrum für Informationstechnik Berlin)
[22] Noor, A. K.; Babuska, I., Quality assessment and control of finite element solutions, Finite Element Anal. Des., 3, 1-26 (1987) · Zbl 0608.73072
[23] Babuška, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Int. J. Numer. Methods Engrg., 12, 1597-1615 (1978) · Zbl 0396.65068
[24] Mitchell, W. F., A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software, 15, 326-347 (1989) · Zbl 0900.65306
[25] Bank, R. E.; Weiser, A., Some a posteriori estimators for elliptic partial differential equations, Math. Comput., 44, 283-301 (1985) · Zbl 0569.65079
[26] Peters, N., Discussion of test problem A, (Peters, N.; Warnatz, J., Numerical Methods in Laminar Flame Propagation. Numerical Methods in Laminar Flame Propagation, Notes on numerical fluid mechanics, Vol. 6 (1982), Vieweg), 1-14
[27] Bush, W. B.; Fendel, F. E., Asymptotic analysis of laminar flame propagation for general Lewis number, Combust. Sci. Tech., 1, 421-428 (1970)
[28] Benkaldoun, F.; Denet, B.; Larrouturou, B., Numerical investigation of the extinction limit of curved flames, Combust. Sci. Tech., 64, 187-198 (1989)
[29] Matkowsky, B. J.; Volpert, V., Spiral gasless condensed phase combustion, SIAM J. Appl. Math., 54, 132-146 (1994) · Zbl 0791.35054
[30] Bayliss, A.; Matkowsky, B. J., Fronts, relaxation oscillations, and period doubling in solid fuel combustion, J. Comput. Phys., 71, 147-168 (1987) · Zbl 0616.65133
[31] Smooke, M. D.; Koszykowski, M. L., Two-dimensional fully adaptive solutions of solid-solid alloying reactions, J. Comput. Phys., 62, 1-25 (1986) · Zbl 0588.65086
[32] Booth, F., The theory of self-propagating exothermic reactions in solid systems, Trans. Faraday Soc., 49, 272-281 (1953)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.