×

An arbitrary Lagrangian-Eulerian discretization of MHD on 3D unstructured grids. (English) Zbl 1310.76098

Summary: We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic induction equation is discretized using a compatible mixed finite element method with a second order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a second order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence-free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

ALE3D; FEMSTER; ZEUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[2] Pierce, T.; Rodrigue, G., A parallel two-sided contact algorithm in ALE3D, Comput. Methods Appl. Mech. Eng., 194, 27, 3127-3146 (2005) · Zbl 1091.74048
[3] A. Nichols, R. Couch, J. Matlby, R. McCallen, I. Otero, R. Sharp, Coupled thermal/chemcial/mechanical modeling of energetic materials in ALE3D, Technical Report UCRL-JC-124706, Lawrence Livermore National Laboratory, 1996.; A. Nichols, R. Couch, J. Matlby, R. McCallen, I. Otero, R. Sharp, Coupled thermal/chemcial/mechanical modeling of energetic materials in ALE3D, Technical Report UCRL-JC-124706, Lawrence Livermore National Laboratory, 1996.
[4] R. Couch, R. Sharp, I. Otero, R. Tipton, R. McCallen, Application of ALE techniques to metal forming simulations, Technical Report UCRL-JC-114851, Lawrence Livermore National Laboratory, 1993.; R. Couch, R. Sharp, I. Otero, R. Tipton, R. McCallen, Application of ALE techniques to metal forming simulations, Technical Report UCRL-JC-114851, Lawrence Livermore National Laboratory, 1993.
[5] M. McClelland, J. Maienschein, A. Nichols, J. Wardell, A. Atwood, P. Curran, ALE3D model predictions and materials charcterization for the cookoff response of pbxn-109, Technical Report UCRL-JC-145756, Lawrence Livermore National Laboratory, 2002.; M. McClelland, J. Maienschein, A. Nichols, J. Wardell, A. Atwood, P. Curran, ALE3D model predictions and materials charcterization for the cookoff response of pbxn-109, Technical Report UCRL-JC-145756, Lawrence Livermore National Laboratory, 2002.
[6] R. Couch, D. Faux. , Simulation of underwater benchmark experiments with ALE3D. Technical Report UCRL-JC-123819, Lawrence Livermore National Laboratory, 1997.; R. Couch, D. Faux. , Simulation of underwater benchmark experiments with ALE3D. Technical Report UCRL-JC-123819, Lawrence Livermore National Laboratory, 1997.
[7] D. Stevens, Compressible multiphase flows in an ALE framework, Technical Report UCRL-JC-201373, Lawrence Livermore National Laboratory, 2003.; D. Stevens, Compressible multiphase flows in an ALE framework, Technical Report UCRL-JC-201373, Lawrence Livermore National Laboratory, 2003.
[8] C. Aro, E. Dube, W. Futral, Coupled mechanical/heat transfer simulation on MPP platforms using a finite element linear solver interface, Technical Report UCRL-JC-131746, Lawrence Livermore National Laboratory, 1999.; C. Aro, E. Dube, W. Futral, Coupled mechanical/heat transfer simulation on MPP platforms using a finite element linear solver interface, Technical Report UCRL-JC-131746, Lawrence Livermore National Laboratory, 1999.
[9] R. Tipton, A 2D lagrange MHD code, Technical Report UCRL-JC-94277, Lawrence Livermore National Laboratory.; R. Tipton, A 2D lagrange MHD code, Technical Report UCRL-JC-94277, Lawrence Livermore National Laboratory.
[10] R. Tipton, Modeling flux compression generators with a 2D ALE code, Technical Report UCRL-JC-99900, Lawrence Livermore National Laboratory.; R. Tipton, Modeling flux compression generators with a 2D ALE code, Technical Report UCRL-JC-99900, Lawrence Livermore National Laboratory.
[11] Toth, G., The ∇·\(B=0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 2, 605-652 (2000) · Zbl 0980.76051
[12] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows: a constrained transport method, Astrophys. J., 332, 659-677 (1988)
[13] Stone, J. M.; Norman, M. L., ZEUS 2D - a radiation magnetohydrodynamics code for astrophysical flows in 2 space dimensions: II. The magnetohydrodynamic algorithms and tests, Astrophys. J. Suppl. Ser., 80, 2, 791-818 (1992)
[14] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174, 2, 614-648 (2001) · Zbl 1157.76369
[15] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292 (1999) · Zbl 0936.76051
[16] Balsara, D. S., Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149-184 (2004)
[17] Balsara, D. S.; Kim, J., A comparison between divergence-cleaning and staggered mesh formulations for numerical magnetohydrodynamics, Astrophys. J., 602, 1079-1090 (2004)
[18] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 508-524 (2000)
[19] Stone, J. M.; Hawley, J. F.; Evans, C. R.; Norman, M. L., A test suite for magnetohydrodynamic simulations, Astrophys. J., 388, 2, 415-437 (1992)
[20] Peterkin, R. E.; Frese, M. H.; Sovinec, C. R., Transport of magnetic flux in an arbitrary coordinate ALE code, J. Comput. Phys., 140, 1, 148-171 (1998) · Zbl 0905.76060
[21] Kuzmin, D.; Turek, S., High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter, J. Comput. Phys., 198, 1, 131-158 (2004) · Zbl 1107.76352
[22] Nédélec, J. C., Mixed finite elements in R3, Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[23] Bochev, P.; Hu, J.; Robinson, A.; Tuminaro, R., Towards robust Z-pinch simulations: discretization and fast solvers for magnetic diffusion in heterogenous conductors, Electron. Trans. Numer. Anal., 15, 186-210 (2003) · Zbl 1201.76041
[24] J.D. Jackson, Classical Electrodynamics, 1962.; J.D. Jackson, Classical Electrodynamics, 1962.
[25] Lax, M.; Nelson, D. F., Maxwell equations in material form, Phys. Rev. B, 13, 4, 1777-1784 (1975)
[26] Rieben, R.; White, D., Verification of high-order mixed FEM solution of transient magnetic diffusion problems, IEEE Trans. Mag., 42, 1, 25-39 (2006)
[27] A. Robinson, Personal communication, 2005.; A. Robinson, Personal communication, 2005.
[28] Arnold, D., Compatible Spatial Discreizations. Compatible Spatial Discreizations, IMA Volumes in Mathematics and its Applications (2006), Springer-Verlag
[29] Castillo, P.; Koning, J.; Rieben, R.; White, D., A discrete differential forms framework for computational electromagnetics, Comput. Model. Eng. Sci., 5, 4, 331-346 (2004) · Zbl 1109.78322
[30] Castillo, P.; Rieben, R.; White, D., FEMSTER: An object oriented class library of higher-order discrete differential forms, ACM Trans. Math. Soft., 31, 4, 425-457 (2005) · Zbl 1136.78330
[31] Bochev, P.; Shaskov, M., Constrained interpolation (remap) of divergence-free fields, Comput. Methods Appl. Mech. Eng., 194, 511-530 (2005) · Zbl 1143.65389
[32] Rieben, R.; White, D.; Rodrigue, G., A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids, J. Comput. Phys., 204, 490-519 (2005) · Zbl 1073.78010
[33] M. Berger, M. Aftosmis, Analysis of slope limiters on irregular grids, Technical Report 2005-0490, American Institute of Aeronautics and Astronautics.; M. Berger, M. Aftosmis, Analysis of slope limiters on irregular grids, Technical Report 2005-0490, American Institute of Aeronautics and Astronautics.
[34] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050
[35] LeVeque, R. J., Numerical Methods for Conservation Laws (1990), Birkhauser-Verlag · Zbl 0682.76053
[36] Jameson, A., Computational algorithms for aerodynamic analysis and design, Appl. Numer. Math., 13, 383-422 (1993) · Zbl 0792.76049
[37] T.V. Kolev, P.S. Vassilevski, Parallel H1-based auxiliary space AMG solver for \(H curl \); T.V. Kolev, P.S. Vassilevski, Parallel H1-based auxiliary space AMG solver for \(H curl \) · Zbl 1142.78009
[38] Sehearer, J. W., Explosive driven magnetic field compression generators, J. Appl. Phys., 39, 4, 2102-2116 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.