zbMATH — the first resource for mathematics

Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat. (English) Zbl 0802.92027
Summary: A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat was proposed in a paper of G. Stephanopoulis and G. Lapidus [Chem. Engin. Sci. 43, 49-57 (1988)]. The model was in the form of a system of nonlinear ordinary differential equations. Such models are relevant to commercial production by genetically altered organisms in continuous culture. The analysis there was local (using index arguments). This paper provides a mathematically rigorous analysis of the global asymptotic behavior of the governing equations in the case of uninhibited specific growth rate.

92D40 Ecology
34C99 Qualitative theory for ordinary differential equations
92C40 Biochemistry, molecular biology
34D05 Asymptotic properties of solutions to ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
37N99 Applications of dynamical systems
Full Text: DOI
[1] Andronov, A. A., Leontovich, E. A., Gordon, I. I., Maier, A. G.: Qualitative Theory of Second Order Dynamical Systems. New York: Wiley 1973 · Zbl 0282.34022
[2] Butler, G. J., Wolkowicz, G. S. K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM. J. Appl. Math. 45, 138-151 (1985) · Zbl 0569.92020 · doi:10.1137/0145006
[3] Butler, G. J., Wolkowicz, G. S. K.: Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources. Math. Biosci. 83, 1-48 (1987) · Zbl 0609.92035 · doi:10.1016/0025-5564(87)90002-2
[4] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. New York: McGraw-Hill 1955 · Zbl 0064.33002
[5] Freedman, H. I., Waltman, P: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213-231 (1984) · Zbl 0534.92026 · doi:10.1016/0025-5564(84)90032-4
[6] Hansen, S. R., Hubbell, S. P.: Single nutrient microbial competition: agreement between experimental and theoretically forecast outcomes. Science 20, 1491-1493 (1980) · doi:10.1126/science.6767274
[7] Hsu, S. B., Waltman, P.: Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM. J. Appl. Math. 52, 528-540 (1992) · Zbl 0788.34040 · doi:10.1137/0152029
[8] Jost, J. L., Drake, J. F., Fredrickson, A. G., Tsuchiya, H. M.: Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol. 113, 834-840 (1973)
[9] Levin, B. R., Stewart, F. M.: The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94, 425-443 (1980)
[10] Macken, C. A., Levin, S. A., Waldstatter, R.: The dynamics of bacteria-plasmid systems. J. Math. Biol. 32, 123-145 (1994) · Zbl 0806.92017 · doi:10.1007/BF00163028
[11] Ryder, D. F., DiBiasio, D.: An operational strategy for unstable recombinant DNA cultures. Biotechnol Bioeng 26, 942-947 (1984) · doi:10.1002/bit.260260819
[12] Simonsen, L.: The existence conditions for bacterial plasmids: theory and reality. Microbial Ecol. 22, 187-206 (1991) · doi:10.1007/BF02540223
[13] Stephanopoulis, G., Lapidus, G.: Chemostat dynamics of plasmid-bearing and plasmid-free mixed recombinant cultures. Chem. Engin. Sci. 43, 49-57 (1988) · doi:10.1016/0009-2509(88)87125-2
[14] Thieme, H. R.: Convergence results and a PoincarĂ©-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755-763 (1992) · Zbl 0761.34039 · doi:10.1007/BF00173267
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.