×

Scaling limits of integrable quantum field theories. (English) Zbl 1246.81093

Modern theory of non-perturbative renormalization is at the core of many achievements of contemporary physics. Historically, the renormalization group technique had its origin in scale invariance. The requirement that scattering amplitudes are independent of our choice of the energy scale at which the theory is renormalized lead to the Callan-Symanzik equation from 1970. The most important application of computing the large energy limit is the asymptotic freedom of quantum chromodynamics. In the present article the authors study the scaling limit of a class of integrable models in 1+1-dimensional space-time. It is interesting to note that two-dimensional sigma models share with QCD the property of asymptotic freedom. There exist many different approaches to obtaining scaling limits. Within the context of algebraic quantum field theory, Buchholz and Verch reconsidered the renormalization group and introduced so-called scaling algebras. One can also make use of so-called wedge-local quantum field, i.e. fields that are localized in infinite wedge-shaped space-time regions. The algebraic as well as the wedge technique is used in the present article. It is shown that limit theories exist for integrable field theories. They disintegrate into tensor products of chiral field theories covariant under translations. Consider now observables that are localized in finite light ray intervals. On the subspace generated by applying these observables to the vacuum, this dilation symmetry can be extended to the Möbius group, i.e. the scaling limit extends to a conformal quantum field on the circle.

MSC:

81T05 Axiomatic quantum field theory; operator algebras
81T17 Renormalization group methods applied to problems in quantum field theory
47C15 Linear operators in \(C^*\)- or von Neumann algebras
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R15 Operator algebra methods applied to problems in quantum theory
46L60 Applications of selfadjoint operator algebras to physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1142/9789814360494 · doi:10.1142/9789814360494
[2] DOI: 10.1016/0370-2693(79)90561-6 · doi:10.1016/0370-2693(79)90561-6
[3] Babujian H. M., SIGMA 2 pp 082–
[4] DOI: 10.1142/S0217751X04020294 · Zbl 1080.81036 · doi:10.1142/S0217751X04020294
[5] DOI: 10.1103/PhysRevD.19.2477 · doi:10.1103/PhysRevD.19.2477
[6] DOI: 10.1063/1.522898 · doi:10.1063/1.522898
[7] Boas R., Entire Functions (1954)
[8] DOI: 10.1007/BF02099011 · Zbl 0751.46045 · doi:10.1007/BF02099011
[9] DOI: 10.1007/s002200100411 · Zbl 0985.81054 · doi:10.1007/s002200100411
[10] DOI: 10.1007/BF02104505 · Zbl 0715.46044 · doi:10.1007/BF02104505
[11] DOI: 10.1007/BF02821677 · Zbl 0151.44303 · doi:10.1007/BF02821677
[12] DOI: 10.1007/s00220-008-0613-3 · Zbl 1155.81029 · doi:10.1007/s00220-008-0613-3
[13] DOI: 10.1007/s00220-009-0899-9 · Zbl 1207.81050 · doi:10.1007/s00220-009-0899-9
[14] DOI: 10.1007/978-3-662-09089-3 · doi:10.1007/978-3-662-09089-3
[15] DOI: 10.1007/BF01609862 · doi:10.1007/BF01609862
[16] DOI: 10.1016/0550-3213(96)00143-5 · Zbl 1004.81515 · doi:10.1016/0550-3213(96)00143-5
[17] DOI: 10.1016/0022-1236(90)90104-S · Zbl 0705.46033 · doi:10.1016/0022-1236(90)90104-S
[18] DOI: 10.1007/s00023-004-0190-8 · Zbl 1072.81043 · doi:10.1007/s00023-004-0190-8
[19] DOI: 10.1016/0920-5632(88)90367-2 · Zbl 0958.22500 · doi:10.1016/0920-5632(88)90367-2
[20] DOI: 10.1142/S0129055X90000053 · Zbl 0748.46040 · doi:10.1142/S0129055X90000053
[21] DOI: 10.1088/1751-8113/40/9/019 · Zbl 1122.81057 · doi:10.1088/1751-8113/40/9/019
[22] DOI: 10.1142/S0129055X9500044X · Zbl 0842.46052 · doi:10.1142/S0129055X9500044X
[23] DOI: 10.1142/S0129055X98000252 · Zbl 0916.46056 · doi:10.1142/S0129055X98000252
[24] DOI: 10.1142/S0129055X06002723 · Zbl 1110.81134 · doi:10.1142/S0129055X06002723
[25] DOI: 10.1007/s00023-004-0183-7 · Zbl 1065.81084 · doi:10.1007/s00023-004-0183-7
[26] DOI: 10.1007/s00220-010-1173-x · Zbl 1222.81203 · doi:10.1007/s00220-010-1173-x
[27] L. D. Faddeev, Mathematical Physics Reviews 1 (Harwood Academic, 1980) pp. 107–155.
[28] DOI: 10.1103/PhysRevLett.34.833 · doi:10.1103/PhysRevLett.34.833
[29] DOI: 10.1007/BF02742979 · doi:10.1007/BF02742979
[30] DOI: 10.1007/s002200050297 · Zbl 0993.46035 · doi:10.1007/s002200050297
[31] DOI: 10.1007/978-3-642-61458-3 · doi:10.1007/978-3-642-61458-3
[32] DOI: 10.1103/PhysRevD.18.1275 · doi:10.1103/PhysRevD.18.1275
[33] DOI: 10.1515/9781400863167 · doi:10.1515/9781400863167
[34] DOI: 10.4007/annals.2004.160.493 · Zbl 1083.46038 · doi:10.4007/annals.2004.160.493
[35] DOI: 10.1023/A:1025772304804 · Zbl 1038.81045 · doi:10.1023/A:1025772304804
[36] DOI: 10.1088/0305-4470/38/13/015 · Zbl 1081.81073 · doi:10.1088/0305-4470/38/13/015
[37] DOI: 10.1007/978-3-7643-7434-1_13 · doi:10.1007/978-3-7643-7434-1_13
[38] DOI: 10.1007/s00220-007-0381-5 · Zbl 1163.81010 · doi:10.1007/s00220-007-0381-5
[39] DOI: 10.1142/S0129055X04002163 · Zbl 1078.81052 · doi:10.1142/S0129055X04002163
[40] DOI: 10.1007/s00220-010-1133-5 · Zbl 1214.81253 · doi:10.1007/s00220-010-1133-5
[41] DOI: 10.1007/BF02102093 · Zbl 0715.17028 · doi:10.1007/BF02102093
[42] DOI: 10.1103/PhysRevLett.38.793 · doi:10.1103/PhysRevLett.38.793
[43] DOI: 10.1142/S0129055X98000380 · Zbl 0918.46070 · doi:10.1142/S0129055X98000380
[44] Reed M., Methods of Modern Mathematical Physics, Vol. I: Functional Analysis (1972) · Zbl 0242.46001
[45] Reed M., Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness (1975) · Zbl 0308.47002
[46] J. E. Roberts, Cargèse Lectures in Physics 4 (Gordon and Breach, New York, 1970) pp. 61–78.
[47] DOI: 10.1007/978-3-642-61993-9 · doi:10.1007/978-3-642-61993-9
[48] DOI: 10.1016/S0550-3213(97)00359-3 · Zbl 0935.81042 · doi:10.1016/S0550-3213(97)00359-3
[49] DOI: 10.1006/aphy.1999.5921 · Zbl 0989.81057 · doi:10.1006/aphy.1999.5921
[50] DOI: 10.1016/0550-3213(78)90499-6 · doi:10.1016/0550-3213(78)90499-6
[51] Schroer B., Rev. Math. Phys. 12 pp 301–
[52] DOI: 10.1142/1115 · doi:10.1142/1115
[53] Streater R. F., PCT, Spin and Statistics, and All That (1964) · Zbl 0135.44305
[54] Titchmarsh E., The Theory of Functions (1939) · Zbl 0022.14602
[55] DOI: 10.1016/0003-4916(79)90391-9 · doi:10.1016/0003-4916(79)90391-9
[56] DOI: 10.1016/0550-3213(92)90136-Y · doi:10.1016/0550-3213(92)90136-Y
[57] Zinn-Justin J., Quantum Field Theory and Critical Phenomena (1989) · Zbl 0865.00014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.