×

Localisation in 2+1 dimensional SU(3) pure gauge theory at finite temperature. (English) Zbl 1416.81119

Summary: I study the localisation properties of low Dirac eigenmodes in 2+1 dimensional SU(3) pure gauge theory, both in the low-temperature, confined and chirally-broken phase and in the high-temperature, deconfined and chirally-restored phase, by means of numerical lattice simulations. While these modes are delocalised at low temperature, they become localised at high temperature, up to a critical point in the Dirac spectrum where a BKTtype Anderson transition takes place. All results point to localisation appearing at the deconfinement temperature, and support previous expectations about the close relation between deconfinement, chiral symmetry breaking, and localisation.

MSC:

81T25 Quantum field theory on lattices
62P35 Applications of statistics to physics
80A10 Classical and relativistic thermodynamics
81R40 Symmetry breaking in quantum theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

Software:

ARPACK; MINUIT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Wuppertal-Budapest collaboration, Is there still any Tcmystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP09 (2010) 073 [arXiv:1005.3508] [INSPIRE]. · Zbl 1291.81382
[2] A. Bazavov et al., Polyakov loop in 2 + 1 flavor QCD from low to high temperatures, Phys. Rev.D 93 (2016) 114502 [arXiv:1603.06637] [INSPIRE].
[3] G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys.B 469 (1996) 419 [hep-lat/9602007] [INSPIRE].
[4] P.H. Damgaard, U.M. Heller, A. Krasnitz and T. Madsen, A quark-anti-quark condensate in three-dimensional QCD, Phys. Lett.B 440 (1998) 129 [hep-lat/9803012] [INSPIRE].
[5] F. Karsch, E. Laermann and C. Schmidt, The chiral critical point in three-flavor QCD, Phys. Lett.B 520 (2001) 41 [hep-lat/0107020] [INSPIRE]. · Zbl 0988.81549
[6] P. de Forcrand and O. Philipsen, The QCD phase diagram for three degenerate flavors and small baryon density, Nucl. Phys.B 673 (2003) 170 [hep-lat/0307020] [INSPIRE]. · Zbl 1097.81921
[7] P. de Forcrand and O. Philipsen, The chiral critical point of Nf = 3 QCD at finite density to the order (μ/T)4, JHEP11 (2008) 012 [arXiv:0808.1096] [INSPIRE].
[8] G. Bergner, C. López and S. Piemonte, A study of center and chiral symmetry realization in thermal N = 1 super Yang-Mills theory using the gradient flow, arXiv:1902.08469 [INSPIRE].
[9] F. Karsch and M. Lütgemeier, Deconfinement and chiral symmetry restoration in an SU(3) gauge theory with adjoint fermions, Nucl. Phys.B 550 (1999) 449 [hep-lat/9812023] [INSPIRE]. · Zbl 1051.81563
[10] T. DeGrand, Y. Shamir and B. Svetitsky, Near the sill of the conformal window: gauge theories with fermions in two-index representations, Phys. Rev.D 88 (2013) 054505 [arXiv:1307.2425] [INSPIRE].
[11] T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys.B 169 (1980) 103 [INSPIRE].
[12] A.M. García-García and J.C. Osborn, Chiral phase transition and Anderson localization in the instanton liquid model for QCD, Nucl. Phys.A 770 (2006) 141 [hep-lat/0512025] [INSPIRE].
[13] A.M. García-García and J.C. Osborn, Chiral phase transition in lattice QCD as a metal-insulator transition, Phys. Rev.D 75 (2007) 034503 [hep-lat/0611019] [INSPIRE].
[14] T.G. Kovács, Absence of correlations in the QCD Dirac spectrum at high temperature, Phys. Rev. Lett.104 (2010) 031601 [arXiv:0906.5373] [INSPIRE].
[15] T.G. Kovács and F. Pittler, Anderson localization in quark-gluon plasma, Phys. Rev. Lett.105 (2010) 192001 [arXiv:1006.1205] [INSPIRE]. · doi:10.1103/PhysRevLett.105.192001
[16] T.G. Kovács and F. Pittler, Poisson to random matrix transition in the QCD Dirac spectrum, Phys. Rev.D 86 (2012) 114515 [arXiv:1208.3475] [INSPIRE].
[17] G. Cossu and S. Hashimoto, Anderson localization in high temperature QCD: background configuration properties and Dirac eigenmodes, JHEP06 (2016) 056 [arXiv:1604.00768] [INSPIRE]. · doi:10.1007/JHEP06(2016)056
[18] L. Holicki, E.-M. Ilgenfritz and L. von Smekal, The Anderson transition in QCD with Nf = 2 + 1 + 1 twisted mass quarks: overlap analysis, arXiv:1810.01130 [INSPIRE].
[19] M. Giordano, T.G. Kovács and F. Pittler, Universality and the QCD Anderson transition, Phys. Rev. Lett.112 (2014) 102002 [arXiv:1312.1179] [INSPIRE]. · doi:10.1103/PhysRevLett.112.102002
[20] P.A. Lee and T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys.57 (1985) 287 [INSPIRE]. · doi:10.1103/RevModPhys.57.287
[21] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys.80 (2008) 1355 [arXiv:0707.4378].
[22] T.G. Kovács and R.A. Vig, Localization transition in SU(3) gauge theory, Phys. Rev.D 97 (2018) 014502 [arXiv:1706.03562] [INSPIRE].
[23] M. Giordano, S.D. Katz, T.G. Kovács and F. Pittler, Deconfinement, chiral transition and localisation in a QCD-like model, JHEP02 (2017) 055 [arXiv:1611.03284] [INSPIRE]. · Zbl 1377.81228 · doi:10.1007/JHEP02(2017)055
[24] M. Giordano, T.G. Kovács and F. Pittler, Localization and chiral properties near the ordering transition of an Anderson-like toy model for QCD, Phys. Rev.D 95 (2017) 074503 [arXiv:1612.05059] [INSPIRE].
[25] M. Giordano, T.G. Kovács and F. Pittler, An Anderson-like model of the QCD chiral transition, JHEP06 (2016) 007 [arXiv:1603.09548] [INSPIRE]. · doi:10.1007/JHEP06(2016)007
[26] F. Bruckmann, T.G. Kovács and S. Schierenberg, Anderson localization through Polyakov loops: lattice evidence and Random matrix model, Phys. Rev.D 84 (2011) 034505 [arXiv:1105.5336] [INSPIRE].
[27] M. Giordano, T.G. Kovács and F. Pittler, An Ising-Anderson model of localisation in high-temperature QCD, JHEP04 (2015) 112 [arXiv:1502.02532] [INSPIRE]. · doi:10.1007/JHEP04(2015)112
[28] R.D. Pisarski, Chiral symmetry breaking in three-dimensional electrodynamics, Phys. Rev.D 29 (1984) 2423 [INSPIRE].
[29] C. Burden and A.N. Burkitt, Lattice fermions in odd dimensions, Europhys. Lett.3 (1987) 545 [INSPIRE]. · doi:10.1209/0295-5075/3/5/006
[30] X.C. Xie, X.R. Wang and D.Z. Liu, Kosterlitz-Thouless-type metal-insulator transition of a 2d electron gas in a random magnetic field, Phys. Rev. Lett.80 (1998) 3563.
[31] P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev.109 (1958) 1492 [INSPIRE]. · doi:10.1103/PhysRev.109.1492
[32] P. de Forcrand, Localization properties of fermions and bosons, AIP Conf. Proc.892 (2007) 29 [hep-lat/0611034] [INSPIRE].
[33] D. Diakonov and V. Yu. Petrov, A theory of light quarks in the instanton vacuum, Nucl. Phys.B 272 (1986) 457 [INSPIRE].
[34] D. Diakonov, Chiral symmetry breaking by instantons, Proc. Int. Sch. Phys. Fermi130 (1996) 397 [hep-ph/9602375] [INSPIRE].
[35] A.M. Halász and J.J.M. Verbaarschot, Universal fluctuations in spectra of the lattice Dirac operator, Phys. Rev. Lett.74 (1995) 3920 [hep-lat/9501025] [INSPIRE].
[36] M. Giordano, Localisation, chiral symmetry and confinement in QCD and related theories, in 13thConference on Quark Confinement and the Hadron Spectrum (Confinement XIII), Maynooth, Ireland, 31 July-6 August 2018 [arXiv:1811.04792] [INSPIRE].
[37] B.L. Altshuler and B.I. Shklovskii, Repulsion of energy levels and conductivity of small metal samples, Sov. Phys. JETP64 (1986) 127.
[38] M.L. Mehta, Random matrices, volume 142, 3 edition, Elsevier, The Netherlands (2004). · Zbl 1107.15019
[39] T. Guhr, A. Müller-Groeling and H.A. Weidenmüller, Random matrix theories in quantum physics: common concepts, Phys. Rept.299 (1998) 189 [cond-mat/9707301] [INSPIRE].
[40] J.J.M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci.50 (2000) 343 [hep-ph/0003017] [INSPIRE].
[41] M.R. Zirnbauer, Symmetry classes, in The Oxford handbook of random matrix theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press, Oxford, U.K. (2011), pg. 43 [arXiv:1001.0722] [INSPIRE].
[42] B.I. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides and H.B. Shore, Statistics of spectra of disordered systems near the metal-insulator transition, Phys. Rev.B 47 (1993) 11487 [INSPIRE].
[43] K. Slevin and T. Ohtsuki, Corrections to scaling at the Anderson transition, Phys. Rev. Lett.82 (1999) 382 [cond-mat/9812065]. · Zbl 1044.82575
[44] L. Ujfalusi, M. Giordano, F. Pittler, T.G. Kovács and I. Varga, Anderson transition and multifractals in the spectrum of the Dirac operator of quantum chromodynamics at high temperature, Phys. Rev.D 92 (2015) 094513 [arXiv:1507.02162] [INSPIRE].
[45] M. Gross and J.F. Wheater, Deconfining transitions in (2 + 1)-dimensional SU(3) and SU(4) gauge theories, Z. Phys.C 28 (1985) 471 [INSPIRE].
[46] J. Christensen, G. Thorleifsson, P.H. Damgaard and J.F. Wheater, Thermodynamics of SU(3) lattice gauge theory in (2 + 1)-dimensions, Nucl. Phys.B 374 (1992) 225 [INSPIRE]. · Zbl 0979.81593
[47] J. Christensen, G. Thorleifsson, P.H. Damgaard and J.F. Wheater, Three-dimensional deconfinement transitions and conformal symmetry, Phys. Lett.B 276 (1992) 472 [INSPIRE].
[48] J. Engels et al., A study of finite temperature gauge theory in (2 + 1)-dimensions, Nucl. Phys. Proc. Suppl.53 (1997) 420 [hep-lat/9608099] [INSPIRE].
[49] J. Liddle and M. Teper, The deconfining phase transition in D = 2 + 1 SU(N) gauge theories, arXiv:0803.2128 [INSPIRE].
[50] P. Bialas, L. Daniel, A. Morel and B. Petersson, Thermodynamics of SU(3) gauge theory in 2+1 dimensions, Nucl. Phys.B 807 (2009) 547[arXiv:0807.0855] [INSPIRE]. · Zbl 1192.81227
[51] P. Bialas, L. Daniel, A. Morel and B. Petersson, Three dimensional finite temperature SU(3) gauge theory in the confined region and the string picture, Nucl. Phys.B 836 (2010) 91 [arXiv:0912.0206] [INSPIRE]. · Zbl 1206.81094
[52] P. Bialas, L. Daniel, A. Morel and B. Petersson, Three dimensional finite temperature SU(3) gauge theory near the phase transition, Nucl. Phys.B 871 (2013) 111 [arXiv:1211.3304] [INSPIRE]. · Zbl 1262.81104
[53] E.N. Economou and P.D. Antoniou, Localization and off-diagonal disorder, Solid State Commun.21 (1977) 285. · doi:10.1016/0038-1098(77)90188-0
[54] D. Weaire and V. Srivastava, Numerical results for Anderson localisation in the presence of off-diagonal disorder, Solid State Commun.23 (1977) 863. · doi:10.1016/0038-1098(77)90970-X
[55] V.L. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems, Sov. Phys. JETP32 (1971) 493 [Zh. Eksp. Teor. Fiz.59 (1971) 907] [INSPIRE].
[56] V.L. Berezinsky, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems, Sov. Phys. JETP34 (1972) 610 [Zh. Eksp. Teor. Fiz.61 (1972) 1144] [INSPIRE].
[57] J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys.C 6 (1973) 1181 [INSPIRE].
[58] M.N. Barber, Finite-size scaling, in Phase transitions and critical phenomena, volume 8, C. Domb and J.L. Lebowitz eds., Academic Press, (1983), pg. 146.
[59] E. Abrahams, P.W. Anderson, D.C. Licciardello and T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett.42 (1979) 673 [INSPIRE]. · doi:10.1103/PhysRevLett.42.673
[60] R.B. Lehoucq, D.C. Sorensen and C. Yang, ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, volume 6, SIAM, U.S.A. (1998). · Zbl 0901.65021
[61] M. Creutz, Monte Carlo study of quantized SU(2) gauge theory, Phys. Rev.D 21 (1980) 2308 [INSPIRE].
[62] N. Cabibbo and E. Marinari, A new method for updating SU(N) matrices in computer simulations of gauge theories, Phys. Lett.B 119 (1982) 387 [INSPIRE].
[63] F.R. Brown and T.J. Woch, Overrelaxed heat bath and Metropolis algorithms for accelerating pure gauge Monte Carlo calculations, Phys. Rev. Lett.58 (1987) 2394 [INSPIRE].
[64] M. Creutz, Overrelaxation and Monte Carlo simulation, Phys. Rev.D 36 (1987) 515 [INSPIRE].
[65] F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun.10 (1975) 343 [INSPIRE]. · doi:10.1016/0010-4655(75)90039-9
[66] G.P. Lepage et al., Constrained curve fitting, Nucl. Phys. Proc. Suppl.106 (2002) 12 [hep-lat/0110175] [INSPIRE]. · Zbl 1058.65505
[67] S.M. Nishigaki, M. Giordano, T.G. Kovács and F. Pittler, Critical statistics at the mobility edge of QCD Dirac spectra, PoS(LATTICE2013)018 (2014) [arXiv:1312.3286] [INSPIRE].
[68] I. Varga, E. Hofstetter, M. Schreiber and J. Pipek, Shape analysis of the level-spacing distribution around the metal-insulator transition in the three-dimensional Anderson model, Phys. Rev.B 52 (1995) 7783 [cond-mat/9407058].
[69] M. Giordano, T.G. Kovács and F. Pittler, Anderson localization in QCD-like theories, Int. J. Mod. Phys.A 29 (2014) 1445005 [arXiv:1409.5210] [INSPIRE].
[70] K.A. Muttalib, Y. Chen, M.E.H. Ismail and V.N. Nicopoulos, New family of unitary random matrices, Phys. Rev. Lett.71 (1993) 471 [INSPIRE]. · Zbl 0972.82545 · doi:10.1103/PhysRevLett.71.471
[71] A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada and T.H. Seligman, Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices, Phys. Rev.E 54 (1996) 3221 [INSPIRE].
[72] M. Moshe, H. Neuberger and B. Shapiro, A generalized ensemble of random matrices, Phys. Rev. Lett.73 (1994) 1497 [cond-mat/9403085] [INSPIRE]. · Zbl 1020.82580
[73] P. Bialas, Z. Burda and B. Petersson, Random matrix model for QCD3staggered fermions, Phys. Rev.D 83 (2011) 014507 [arXiv:1006.0360] [INSPIRE].
[74] A.J. McKane and M. Stone, Localization as an alternative to Goldstone’s theorem, Annals Phys.131 (1981) 36 [INSPIRE].
[75] M. Golterman and Y. Shamir, Localization in lattice QCD, Phys. Rev.D 68 (2003) 074501 [hep-lat/0306002] [INSPIRE].
[76] T.G. Kovács and R.A. Vig, Localization and topology in high temperature QCD, in 36thInternational Symposium on Lattice Field Theory (Lattice 2018), East Lansing, MI, U.S.A., 22-28 July 2018 [arXiv:1901.00661] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.