×

Unicorn: parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry. (English) Zbl 1284.76223

Summary: We present a framework for adaptive finite element computation of turbulent flow and fluid-structure interaction, with focus on general algorithms that allow for complex geometry and deforming domains. We give basic models and finite element discretization methods, adaptive algorithms and strategies for efficient parallel implementation. To illustrate the capabilities of the computational framework, we show a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The computational tools are free to download open source as Unicorn, and as a high performance branch of the finite element problem solving environment DOLFIN, both part of the FEniCS project.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Logg, A.; Wells, G. N., DOLFIN: automated finite element computing, ACM Trans Math Softw, 37, 2, 1-28 (2010) · Zbl 1364.65254
[5] Hoffman, J.; Johnson, C., Computational turbulent incompressible flow; applied mathematics: body and soul (2007), Springer, vol. 4 · Zbl 1114.76002
[6] Sagaut, P., Large eddy simulation for incompressible flows (2005), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York
[7] Jansson, N.; Hoffman, J.; Jansson, J., Framework for massively parallel adaptive finite element computational fluid dynamics on tetrahedral meshes, SIAM J Sci Comput, 34, 1, C24-C41 (2012) · Zbl 1237.68244
[8] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulation, Annu Rev Fluid Mech, 34, 349-374 (2002) · Zbl 1006.76041
[9] Hoffman, J.; Jansson, J.; Stöckli, M., Unified continuum modeling of fluid-structure interaction, Math Mod Methods Appl Sci (2011) · Zbl 1315.74012
[10] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[11] Guasch, O.; Codina, R., A heuristic argument for the sole use of numerical stabilization with no physical LES modeling in the simulation of incompressible turbulent flows, Preprint Universitat Politecnica de Catalunya (2007)
[12] Guermond, J. L.; Pasquetti, R.; Popov, B., From suitable weak solutions to entropy viscosity, J Sci Comput, 49, 35-50 (2011) · Zbl 1432.76080
[13] Hoffman, J.; Johnson, C., Blow up of incompressible euler equations, BIT, 48, 285-307 (2008) · Zbl 1143.76012
[14] Hansbo, P., A Crank-Nicolson type space-time finite element method for computing on moving meshes, J Comput Phys, 159, 274-289 (2000) · Zbl 0961.65091
[15] Hoffman, J.; Jansson, J.; de Abreu, R. V., Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation, Comput Methods Appl Mech Eng, 200, 37-40, 2758-2767 (2011) · Zbl 1230.76025
[19] Nazarov, M.; Hoffman, J., An adaptive finite element method for inviscid compressible flow, Int J Numer Methods Fluids, 64, 188, 1102-1128 (2010) · Zbl 1427.76139
[20] Guermond, J. L.; Pasquetti, R., Entropy-based nonlinear viscosity for fourier approximations of conservation laws, CR Acad Sci, Ser. I, 346, 801-806 (2008) · Zbl 1145.65079
[21] Guermond, J. L.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws, J Comput Phys, 230, 2011, 4248-4267 (2011) · Zbl 1220.65134
[22] Löhner, R., Applied CFD techniques: an introduction based on finite element methods (2001), John Wiley & Sons
[23] Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J Comput Phys, 18, 4, 376-404 (1975) · Zbl 0403.76049
[24] Hoffman, J.; Jansson, N. A., computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions, (Quality and reliability of large-eddy simulations II; ERCOFTAC series, vol. 16 (2011), Springer: Springer Netherlands), 57-68 · Zbl 1303.76087
[26] Löhner, R.; Yang, C., Improved ALE mesh velocities for moving bodies, Commun Numer Methods Eng, 12, 10, 599-608 (1996) · Zbl 0858.76042
[27] Compère, G.; Remacle, J.; Jansson, J.; Hoffman, J., A mesh adaptation framework for dealing with large deforming meshes, Int J Numer Methods Eng, 82, 7, 843-867 (2010) · Zbl 1188.74093
[28] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta Numer, 4, 105-158 (1995) · Zbl 0829.65122
[29] Becker, R.; Rannacher, R., A posteriori error estimation in finite element methods, Acta Numer, 10, 1-103 (2001) · Zbl 1105.65349
[30] Giles, M.; Süli, E., Adjoint methods for PDES: a posteriori error analysis and postprocessing by duality, Acta Numer, 11, 145-236 (2002) · Zbl 1105.65350
[31] Hoffman, J., Computation of mean drag for bluff body problems using adaptive DNS/LES, SIAM J Sci Comput, 27, 1, 184-207 (2005) · Zbl 1149.65318
[32] Hoffman, J.; Johnson, C., A new approach to computational turbulence modeling, Comput Methods Appl Mech Eng, 195, 2865-2880 (2006) · Zbl 1176.76065
[33] Hoffman, J., Adaptive simulation of the subcritical flow past a sphere, J Fluid Mech, 568, 77-88 (2006) · Zbl 1177.76157
[34] Hoffman, J., Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2, Int J Numer Methods Fluids, 59, 11, 1241-1258 (2009) · Zbl 1409.76062
[36] Rivara, M., New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations, Int J Numer Methods Eng, 40, 18, 3313-3324 (1997) · Zbl 0980.65144
[38] Dijkstra, E. W.; Scholten, C. S., Termination detection for diffusing computations, Inform Process Lett, 11, 1, 1-4 (1980) · Zbl 0439.68039
[39] Bertsekas, D. P.; Tsitsiklis, J. N., Parallel and distributed computation: numerical methods, Athena Sci (1997)
[43] Sahni, O.; Carothers, C. D.; Shephard, M. S.; Jansen, K. E., Strong scaling analysis of a parallel, unstructured, implicit solver and the influence of the operating system interference, Sci Program, 17, 261-274 (2009), <http://dl.acm.org/citation.cfm?id=1611486.1611492>
[50] Lighthill, M. J., On sound generated aerodynamically, Proc Roy Soc Lond A, 211, 564-587 (1952) · Zbl 0049.25905
[51] Ford, R.; Pain, C.; Piggott, M.; Goddard, A.; de Oliveira, C.; Umpleby, A., A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part II: model validation, Mon Weather Rev, 132, 12, 2832-2844 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.