×

Fluctuating thermal boundary layers and heat transfer in turbulent Rayleigh-Bénard convection. (English) Zbl 1370.76056

Summary: We investigate the effect of fluctuations in thermal boundary layer on heat transfer in turbulent Rayleigh-Bénard convection for Prandtl number greater than one in the regime where the thermal dissipation rate is dominated by boundary layer contribution and in the presence of a large-scale circulating flow.

MSC:

76F35 Convective turbulence
76R10 Free convection
80A20 Heat and mass transfer, heat flow (MSC2010)
76N20 Boundary-layer theory for compressible fluids and gas dynamics
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rayleigh, L.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32, 259 (1916) · JFM 46.1249.04
[2] Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pures Appl. 11, 1261 (1900) · JFM 32.0760.03
[3] Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S., Zanetti, G.: Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 204, 1 (1989) · doi:10.1017/S0022112089001643
[4] Siggia, E.D.: High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137 (1994) · Zbl 0800.76425 · doi:10.1146/annurev.fl.26.010194.001033
[5] Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503 (2009) · doi:10.1103/RevModPhys.81.503
[6] Lohse, D., Xia, K.-Q.: Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42, 335 (2010) · Zbl 1345.76038 · doi:10.1146/annurev.fluid.010908.165152
[7] Chilla, F., Schumacher, J.: New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35, 58 (2012) · doi:10.1140/epje/i2012-12058-1
[8] Ching, E.S.C.: Statistics and Scaling in Turbulent Rayleigh-Bénard Convection. Springer, Singapore (2014) · Zbl 1280.76001 · doi:10.1007/978-981-4560-23-8
[9] Kadanoff, L.P.: Turbulent heat flow: structures and scaling. Phys. Today 54, 34 (2001) · doi:10.1063/1.1404847
[10] Heslot, F., Castaing, B., Libchaber, A.: Transition to turbulence in helium gas. Phys. Rev. A 36, 5870 (1987) · doi:10.1103/PhysRevA.36.5870
[11] Malkus, M.V.R.: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196 (1954) · Zbl 0058.20203 · doi:10.1098/rspa.1954.0197
[12] Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27 (2000) · Zbl 0972.76045 · doi:10.1017/S0022112099007545
[13] Grossmann, S., Lohse, D.: Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 3316 (2001) · doi:10.1103/PhysRevLett.86.3316
[14] Grossmann, S., Lohse, D.: Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305 (2002) · doi:10.1103/PhysRevE.66.016305
[15] Grossmann, S., Lohse, D.: Fluctuations in turbulent Rayleigh-Bénard convection: the role of plumes. Phys. Fluids 16, 4462 (2004) · Zbl 1187.76190 · doi:10.1063/1.1807751
[16] Shishkina, O., Horn, S., Wagner, S., Ching, E.S.C.: Thermal boundary layer equation for turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 114, 114302 (2015) · doi:10.1103/PhysRevLett.114.114302
[17] Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics, 2nd edn. Pergamon Press, Oxford (1987) · Zbl 0655.76001
[18] Shraiman, B.I., Siggia, E.D.: Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 3650 (1990) · doi:10.1103/PhysRevA.42.3650
[19] Prandtl, L.: Uber Flüssigkeits bewegung bei sehr kleiner Reibung. In: Proceedings of the III International Mathematicians Congress, pp. 484-491. Teubner, Heidelberg (1904); also available in translation as: Motion of fluids with very little viscosity. NACA TM 452 (March 1928)
[20] Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1-37 (1908) · JFM 39.0803.02
[21] Pohlhausen, E.: Der Wärmetausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z. Angew. Math. Mech. 1, 115-121 (1921) · JFM 48.0969.01 · doi:10.1002/zamm.19210010205
[22] Ching, E.S.C.: Heat flux and shear rate in turbulent convection. Phys. Rev. E 55, 1189 (1997) · doi:10.1103/PhysRevE.55.1189
[23] Shishkina, O., Thess, A.: Mean temperature profiles in turbulent Rayleigh-Bénard convection of water. J. Fluid Mech. 663, 449 (2009) · Zbl 1183.76764 · doi:10.1017/S0022112009990528
[24] Stevens, R.J.A.M., Verzicco, R., Lohse, D.: Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection. J. Fluid Mech. 643, 495 (2010) · Zbl 1189.76286 · doi:10.1017/S0022112009992461
[25] Shi, N., Emran, M.S., Schumacher, J.: Boundary layer structure in turbulent Rayleigh-Bénard convection. J. Fluid Mech. 706, 5 (2012) · Zbl 1275.76135 · doi:10.1017/jfm.2012.207
[26] Scheel, J.D., Kim, E., White, K.R.: Thermal and viscous boundary layers in turbulent Rayleigh-Bénard convection. J. Fluid Mech. 711, 281 (2012) · Zbl 1275.76143 · doi:10.1017/jfm.2012.392
[27] Stevens, R.J.A.M., Zhou, Q., Grossmann, S., Verzicco, R., Xia, K.-Q., Lohse, D.: Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample. Phys. Rev. E 85, 027301 (2012) · doi:10.1103/PhysRevE.85.027301
[28] Kaczorowski, M., Shishkina, O., Shishkin, A.,Wagner, C., Xia, K.-Q.: Development of a numerical procedure for direct simulations of turbulent convection in a closed rectangular cell. In: Kuerten, H. et al. (eds.) Direct and Large-Eddy Simulation VIII, p. 383. Springer, New York (2011) · Zbl 1409.76044
[29] Zhou, Q., Xia, K.-Q.: Thermal boundary layer structure in turbulent Rayleigh-Bénard convection in a rectangular cell. J. Fluid Mech. 721, 199 (2013) · Zbl 1287.76132 · doi:10.1017/jfm.2013.73
[30] Zhou, Q., Xia, K.-Q.: Measured instantaneous viscous boundary layer in turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 104, 104301 (2010) · doi:10.1103/PhysRevLett.104.104301
[31] Shishkina, O., Stevens, R.J.A.M., Grossmann, S., Lohse, D.: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. N. J. Phys. 12, 075022 (2010) · doi:10.1088/1367-2630/12/7/075022
[32] Wang, Y., He, X., Tong, P.: Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-Bénard convection. Phys. Rev. Fluids 1, 082301(R) (2016) · doi:10.1103/PhysRevFluids.1.082301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.