×

A finite element solution to turbulent diffusion in a convective boundary layer. (English) Zbl 0715.76053

Summary: A second-order closure turbulence model is used to simulate the plume behaviour of a passive contaminant dispersed in a convective boundary layer. A time-splitting finite element scheme is used to solve the set of partial differential equations. It is shown that the second-order closure model compares favourably with recent findings from laboratories, wind- tunnel experiments and large-eddy simulations. We also compare the second-order closure model witi the commonly used K-diffusion model for the same meteorological conditions. Case studies also show the effects of model parameters and turbulence variables on the plume behaviour.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R50 Diffusion
76F99 Turbulence
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

SPRINT2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Deardorff, J. Appl. Meteorol. 14 pp 1451– (1975)
[2] Willis, Q. J. R. Meteorol. Soc. 102 pp 427– (1976)
[3] Willis, Atmos. Environ. 12 pp 1305– (1978)
[4] Willis, Atmos. Environ. 15 pp 109– (1981)
[5] and , ’Diffusion in an atmospheric layer with an elevated inversion’, in (ed.), Proc. 1985 Scientific Conf on Obscuration and Aerosol Research, U.S. Army Chemical Research and Development Engineering Center, Aberdeen Proving Ground, 1986, pp. 113-115.
[6] , , and , ’Simultaneous radar and lidar observations of plumes from continuous point sources’, Preprints, 21st Radar Meteorology Conf., American Meteoro-logical Society, Boston, 1983, pp. 246-250.
[7] Deardorff, J. Atmos. Sci. 29 pp 91– (1972)
[8] Moeng, J. Atmos. Sci. 41 pp 2052– (1984)
[9] Nieuwstadt, Atmos. Environ. 21 pp 2573– (1987)
[10] Lewellen, J. Atmos. Sci. 30 pp 1340– (1973)
[11] ’Construction of a dynamic model of production of atmospheric turbulence and the dispersal of atmospheric pollutants’, in (ed.), Workshop of Micrometeorology, American Meteorological society, Boston, 1973, pp. 313-392.
[12] Enger, Atmos. Environ. 20 pp 879– (1986)
[13] Sun, Atmos. Eviron. 20 pp 1877– (1986)
[14] Deardorff, Boundary Layer Meteorol. 18 pp 495– (1980)
[15] Sun, J. Climate Appl. Meteorol. 25 pp 1445– (1986)
[16] Chock, Atmos. Environ. 19 pp 571– (1985)
[17] Carmichael, Atmos. Environ. 20 pp 173– (1986)
[18] Tsang, Atmos. Environ. 17 pp 1291– (1983)
[19] Lamb, Nuovo Cimento 1C pp 1– (1977)
[20] Mellor, J. Atmos. Sci. 31 pp 1791– (1974)
[21] Nieuwstadt, J. Appl. Meteorol. 19 pp 157– (1980)
[22] ’The effects of release height on material dispersion in the convective boundary layer’, Preprint Vol., AMS Fourth Symp. on Turbulence, Diffussion and Air Pollution, American Meteorological Society, 1979, pp. 27-33.
[23] and , ’A user’s manual for SPRINT-a versatile software package for solving systems of algebraic, ordinary and partial differential equatons: Parts 1 & 2’, Thornton Research Centre, Shell Research Limited, Amsterdam 1985.
[24] Businger, J. Atmos. Sci. 28 pp 181– (1971)
[25] Willis, J. Atmos. Sci. 31 pp 1297– (1974)
[26] André, J. Atmos, Sci. 35 pp 1861– (1976)
[27] Deardorff, Boundary Layer Meteorol. 7 pp 81– (1974)
[28] Wyngaard, Boundary Layer Meteorol. 7 pp 289– (1974)
[29] Sun, J. Atmos. Sci. 37 pp 1558– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.