Ekici, Mustafa; Ünal, Metin Application of the rational \((G^\prime/G)\)-expansion method for solving some coupled and combined wave equations. (English) Zbl 07545445 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 116-132 (2022). MSC: 35C07 35C08 PDF BibTeX XML Cite \textit{M. Ekici} and \textit{M. Ünal}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 116--132 (2022; Zbl 07545445) Full Text: DOI OpenURL
Colucci, Renato Special solutions for an equation arising in sand ripple dynamics. (English) Zbl 07544609 Nonlinear Anal., Real World Appl. 67, Article ID 103629, 24 p. (2022). MSC: 35Qxx 34Cxx 35Kxx PDF BibTeX XML Cite \textit{R. Colucci}, Nonlinear Anal., Real World Appl. 67, Article ID 103629, 24 p. (2022; Zbl 07544609) Full Text: DOI OpenURL
Aderyani, Safoura Rezaei; Saadati, Reza; Vahidi, Javad; Allahviranloo, Tofigh The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the trial equation method and modified trial equation method. (English) Zbl 07532757 Adv. Math. Phys. 2022, Article ID 4318192, 11 p. (2022). MSC: 35C05 35A22 35Q55 35R11 PDF BibTeX XML Cite \textit{S. R. Aderyani} et al., Adv. Math. Phys. 2022, Article ID 4318192, 11 p. (2022; Zbl 07532757) Full Text: DOI OpenURL
Bekir, Ahmet; Shehata, Maha S. M.; Zahran, Emad H. M. New optical soliton solutions for the thin-film ferroelectric materials equation instead of the numerical solution. (English) Zbl 07527934 Comput. Methods Differ. Equ. 10, No. 1, 158-167 (2022). MSC: 35C08 35Q55 83C15 PDF BibTeX XML Cite \textit{A. Bekir} et al., Comput. Methods Differ. Equ. 10, No. 1, 158--167 (2022; Zbl 07527934) Full Text: DOI OpenURL
Hupkes, H. J.; Van Vleck, E. S. Travelling waves for adaptive grid discretizations of reaction diffusion systems. I: Well-posedness. (English) Zbl 07522537 J. Dyn. Differ. Equations 34, No. 2, 1505-1599 (2022). MSC: 34K31 34C37 34E15 35C07 35K57 PDF BibTeX XML Cite \textit{H. J. Hupkes} and \textit{E. S. Van Vleck}, J. Dyn. Differ. Equations 34, No. 2, 1505--1599 (2022; Zbl 07522537) Full Text: DOI OpenURL
Daíz Palencia, José Luis Analysis and instabilities of travelling waves solutions for a free boundary problem with non-homogeneous KPP reaction, with degenerate diffusion and with non-linear advection. (English) Zbl 07511808 Dyn. Syst. 37, No. 1, 83-104 (2022). MSC: 35C07 35B35 35K30 35K58 35K91 PDF BibTeX XML Cite \textit{J. L. Daíz Palencia}, Dyn. Syst. 37, No. 1, 83--104 (2022; Zbl 07511808) Full Text: DOI OpenURL
El-Hachem, Maud; McCue, Scott W.; Simpson, Matthew J. A continuum mathematical model of substrate-mediated tissue growth. (English) Zbl 07488655 Bull. Math. Biol. 84, No. 4, Paper No. 49, 27 p. (2022). MSC: 92C50 92C15 35C07 PDF BibTeX XML Cite \textit{M. El-Hachem} et al., Bull. Math. Biol. 84, No. 4, Paper No. 49, 27 p. (2022; Zbl 07488655) Full Text: DOI arXiv OpenURL
Rahman, Nizhum; Marangell, Robert; Oelz, Dietmar Classification and stability analysis of polarising and depolarising travelling wave solutions for a model of collective cell migration. (English) Zbl 07484258 Appl. Math. Comput. 421, Article ID 126954, 19 p. (2022). MSC: 35Bxx 34Lxx 35Kxx PDF BibTeX XML Cite \textit{N. Rahman} et al., Appl. Math. Comput. 421, Article ID 126954, 19 p. (2022; Zbl 07484258) Full Text: DOI arXiv OpenURL
Du, Yihong; Ni, Wenjie Spreading speed for some cooperative systems with nonlocal diffusion and free boundaries. I: Semi-wave and a threshold condition. (English) Zbl 1479.35191 J. Differ. Equations 308, 369-420 (2022). MSC: 35C07 35K51 35K57 35R35 35R09 PDF BibTeX XML Cite \textit{Y. Du} and \textit{W. Ni}, J. Differ. Equations 308, 369--420 (2022; Zbl 1479.35191) Full Text: DOI OpenURL
Munir, Mobeen; Athar, Muhammad; Sarwar, Sakhi; Shatanawi, Wasfi Lie symmetries of generalized equal width wave equations. (English) Zbl 07533421 AIMS Math. 6, No. 11, 12148-12165 (2021). MSC: 22E70 34A05 35A30 58J70 58J72 PDF BibTeX XML Cite \textit{M. Munir} et al., AIMS Math. 6, No. 11, 12148--12165 (2021; Zbl 07533421) Full Text: DOI OpenURL
Ionescu-Kruse, Delia Fronts, pulses, and periodic travelling waves in two-component shallow water models. (English) Zbl 07523917 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 725-748 (2021). MSC: 35Q35 76F10 35C07 76B25 70K05 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Rev. Roum. Math. Pures Appl. 66, No. 3--4, 725--748 (2021; Zbl 07523917) OpenURL
Li, Min; Wang, Boting; Xu, Tao; Wang, Lei Quantitative analysis on the bifurcations and exact travelling wave solutions of a generalized fourth-order dispersive nonlinear Schrödinger equation in Heisenberg spin chain. (English) Zbl 07514618 Chaos Solitons Fractals 145, Article ID 110767, 10 p. (2021). MSC: 37-XX 81-XX PDF BibTeX XML Cite \textit{M. Li} et al., Chaos Solitons Fractals 145, Article ID 110767, 10 p. (2021; Zbl 07514618) Full Text: DOI OpenURL
Liu, Yuanyuan; Wang, Qinlong; Huang, Wentao Period travelling wave solutions of a density-dependent biological invasion model. (Chinese. English summary) Zbl 07448304 J. Anhui Norm. Univ., Nat. Sci. 44, No. 3, 227-232 (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Anhui Norm. Univ., Nat. Sci. 44, No. 3, 227--232 (2021; Zbl 07448304) Full Text: DOI OpenURL
Drábek, Pavel; Takáč, Peter Travelling waves in the Fisher-KPP equation with nonlinear degenerate or singular diffusion. (English) Zbl 1479.35880 Appl. Math. Optim. 84, No. 2, 1185-1208 (2021). MSC: 35Q92 92D25 34B08 35K57 35K65 34B18 35C07 PDF BibTeX XML Cite \textit{P. Drábek} and \textit{P. Takáč}, Appl. Math. Optim. 84, No. 2, 1185--1208 (2021; Zbl 1479.35880) Full Text: DOI arXiv OpenURL
Huang, Wenzhang; Wu, Chufen Non-monotone waves of a stage-structured SLIRM epidemic model with latent period. (English) Zbl 1479.35884 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1407-1442 (2021). MSC: 35Q92 35K57 35C07 35B40 44A10 30E20 92D30 PDF BibTeX XML Cite \textit{W. Huang} and \textit{C. Wu}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1407--1442 (2021; Zbl 1479.35884) Full Text: DOI OpenURL
Preobrazhenskaya, M. M. Discrete traveling waves in a relay system of Mackey-Glass equations with two delays. (English. Russian original) Zbl 07384154 Theor. Math. Phys. 207, No. 3, 827-840 (2021); translation from Teor. Mat. Fiz. 207, No. 3, 489-504 (2021). Reviewer: Ábel Garab (Szeged) MSC: 34K13 34K17 92D25 34K39 PDF BibTeX XML Cite \textit{M. M. Preobrazhenskaya}, Theor. Math. Phys. 207, No. 3, 827--840 (2021; Zbl 07384154); translation from Teor. Mat. Fiz. 207, No. 3, 489--504 (2021) Full Text: DOI OpenURL
Gonzalez Herrero, Maria Elena; Kuehn, Christian; Tsaneva-Atanasova, Krasimira Reduced models of cardiomyocytes excitability: comparing Karma and FitzHugh-Nagumo. (English) Zbl 1468.92029 Bull. Math. Biol. 83, No. 8, Paper No. 88, 37 p. (2021). MSC: 92C37 35C07 35B25 PDF BibTeX XML Cite \textit{M. E. Gonzalez Herrero} et al., Bull. Math. Biol. 83, No. 8, Paper No. 88, 37 p. (2021; Zbl 1468.92029) Full Text: DOI arXiv OpenURL
Demirbilek, Ulviye; Ala, Volkan; Mamedov, Khanlar R. On the new travelling wave solutions of a nonlinear conformable time fractional PDE via IBSEFM. (English) Zbl 1467.35086 J. Adv. Math. Stud. 14, No. 1, 102-108 (2021). MSC: 35C07 35C08 35R11 34K20 32W50 PDF BibTeX XML Cite \textit{U. Demirbilek} et al., J. Adv. Math. Stud. 14, No. 1, 102--108 (2021; Zbl 1467.35086) Full Text: Link OpenURL
Deng, Liangliang; Wang, Zhi-Cheng Propagation phenomena for a criss-cross infection model with non-diffusive susceptible population in periodic media. (English) Zbl 1467.35087 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4789-4814 (2021). MSC: 35C07 35K45 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{L. Deng} and \textit{Z.-C. Wang}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4789--4814 (2021; Zbl 1467.35087) Full Text: DOI OpenURL
Schouten-Straatman, W. M.; Hupkes, H. J. Travelling wave solutions for fully discrete FitzHugh-Nagumo type equations with infinite-range interactions. (English) Zbl 1482.65153 J. Math. Anal. Appl. 502, No. 2, Article ID 125272, 41 p. (2021). MSC: 65M06 65N06 35B25 35C07 92C20 35Q92 PDF BibTeX XML Cite \textit{W. M. Schouten-Straatman} and \textit{H. J. Hupkes}, J. Math. Anal. Appl. 502, No. 2, Article ID 125272, 41 p. (2021; Zbl 1482.65153) Full Text: DOI arXiv OpenURL
Jukić, Mia; Hupkes, Hermen Jan Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. (English) Zbl 1481.34018 Discrete Contin. Dyn. Syst. 41, No. 7, 3163-3209 (2021). Reviewer: Caidi Zhao (Wenzhou) MSC: 34A33 34D05 34D20 35C07 PDF BibTeX XML Cite \textit{M. Jukić} and \textit{H. J. Hupkes}, Discrete Contin. Dyn. Syst. 41, No. 7, 3163--3209 (2021; Zbl 1481.34018) Full Text: DOI arXiv OpenURL
Yokus, Asıf; Tuz, Münevver; Güngöz, Ufuk On the exact and numerical complex travelling wave solution to the nonlinear Schrödinger equation. (English) Zbl 07355103 J. Difference Equ. Appl. 27, No. 2, 195-206 (2021). MSC: 65L12 74S20 PDF BibTeX XML Cite \textit{A. Yokus} et al., J. Difference Equ. Appl. 27, No. 2, 195--206 (2021; Zbl 07355103) Full Text: DOI OpenURL
Zhu, Kun; Shen, Jianhe Smooth travelling wave solutions in a generalized Degasperis-Procesi equation. (English) Zbl 1467.37067 Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105763, 18 p. (2021). MSC: 37K40 37K10 35C07 35Q51 PDF BibTeX XML Cite \textit{K. Zhu} and \textit{J. Shen}, Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105763, 18 p. (2021; Zbl 1467.37067) Full Text: DOI OpenURL
Ramaj, Tedi On the mathematical modelling of competitive invasive weed dynamics. (English) Zbl 1460.92176 Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021). MSC: 92D25 35C07 PDF BibTeX XML Cite \textit{T. Ramaj}, Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021; Zbl 1460.92176) Full Text: DOI OpenURL
Xu, Zhaoquan Global stability of travelling waves for a class of monostable epidemic models. (English) Zbl 1458.35434 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021). MSC: 35Q92 92D30 35B35 35C07 PDF BibTeX XML Cite \textit{Z. Xu}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021; Zbl 1458.35434) Full Text: DOI OpenURL
Kim, Sunghoon; Lee, Ki-Ahm System of porous medium equations. (English) Zbl 1455.35020 J. Differ. Equations 272, 433-472 (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B40 35K65 35K40 35C07 92D25 PDF BibTeX XML Cite \textit{S. Kim} and \textit{K.-A. Lee}, J. Differ. Equations 272, 433--472 (2021; Zbl 1455.35020) Full Text: DOI arXiv OpenURL
Du, Zengji; Liu, Jiang; Ren, Yulin Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach. (English) Zbl 1452.35219 J. Differ. Equations 270, 1019-1042 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 92C17 35C07 34D15 35B25 PDF BibTeX XML Cite \textit{Z. Du} et al., J. Differ. Equations 270, 1019--1042 (2021; Zbl 1452.35219) Full Text: DOI OpenURL
Ducrot, Arnaud Spreading speed for a KPP type reaction-diffusion system with heat losses and fast decaying initial data. (English) Zbl 1461.35050 J. Differ. Equations 270, 217-247 (2021). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35B40 35K57 35C07 PDF BibTeX XML Cite \textit{A. Ducrot}, J. Differ. Equations 270, 217--247 (2021; Zbl 1461.35050) Full Text: DOI OpenURL
Abdelsalam, U. M. Exact solutions for coupled nonlinear partial differential equations using \(G'/G\) method. (English) Zbl 1463.35152 Electron. J. Math. Anal. Appl. 9, No. 1, 67-78 (2021). MSC: 35C07 35C08 35B10 35C09 PDF BibTeX XML Cite \textit{U. M. Abdelsalam}, Electron. J. Math. Anal. Appl. 9, No. 1, 67--78 (2021; Zbl 1463.35152) Full Text: Link OpenURL
Islam, Md. Nurul; Asaduzzaman, Md.; Ali, Md. Shajib Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics. (English) Zbl 1484.35337 AIMS Math. 5, No. 1, 26-41 (2020). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{Md. N. Islam} et al., AIMS Math. 5, No. 1, 26--41 (2020; Zbl 1484.35337) Full Text: DOI OpenURL
Kim, Hyunsoo; Sakthivel, Rathinasamy; Debbouche, Amar; Torres, Delfim F. M. Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations. (English) Zbl 07505847 Chaos Solitons Fractals 131, Article ID 109542, 12 p. (2020). MSC: 60Hxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{H. Kim} et al., Chaos Solitons Fractals 131, Article ID 109542, 12 p. (2020; Zbl 07505847) Full Text: DOI OpenURL
Li, Jibin; Zhou, Yan Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. (English) Zbl 1469.35195 Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3083-3097 (2020). MSC: 35Q55 35B32 35C07 58J55 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhou}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3083--3097 (2020; Zbl 1469.35195) Full Text: DOI OpenURL
Clarke, W. A.; Marangell, R. A new Evans function for quasi-periodic solutions of the linearised sine-Gordon equation. (English) Zbl 1462.35025 J. Nonlinear Sci. 30, No. 6, 3421-3442 (2020). MSC: 35B15 35L71 35C07 35B32 35B35 35P05 47A75 PDF BibTeX XML Cite \textit{W. A. Clarke} and \textit{R. Marangell}, J. Nonlinear Sci. 30, No. 6, 3421--3442 (2020; Zbl 1462.35025) Full Text: DOI arXiv OpenURL
Rezazadeh, Hadi; Vahidi, Javad; Zafar, Asim; Bekir, Ahmet The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity. (English) Zbl 07336594 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3-4, 249-257 (2020). MSC: 35-XX 39-XX PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3--4, 249--257 (2020; Zbl 07336594) Full Text: DOI OpenURL
Crooks, Elaine C. M.; Grinfeld, Michael Minimal travelling wave speed and explicit solutions in monostable reaction-diffusion equations. (English) Zbl 1474.35174 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 79, 9 p. (2020). MSC: 35C07 35K55 35K91 PDF BibTeX XML Cite \textit{E. C. M. Crooks} and \textit{M. Grinfeld}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 79, 9 p. (2020; Zbl 1474.35174) Full Text: DOI arXiv OpenURL
Wang, Yaji; Xu, Hang; Sun, Q. New groups of solutions to the Whitham-Broer-Kaup equation. (English) Zbl 1457.35087 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735-1746 (2020). MSC: 35Q86 86A15 35C07 35B32 PDF BibTeX XML Cite \textit{Y. Wang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735--1746 (2020; Zbl 1457.35087) Full Text: DOI OpenURL
Volpert, Vitaly Some recent developments in the theory and applications of reaction-diffusion waves. (English) Zbl 1460.35003 Pure Appl. Funct. Anal. 5, No. 2, 473-487 (2020). MSC: 35-02 35C07 35K57 35B32 35B35 PDF BibTeX XML Cite \textit{V. Volpert}, Pure Appl. Funct. Anal. 5, No. 2, 473--487 (2020; Zbl 1460.35003) Full Text: Link OpenURL
Hamster, C. H. S.; Hupkes, H. J. Travelling waves for reaction-diffusion equations forced by translation invariant noise. (English) Zbl 1453.35202 Physica D 401, Article ID 132233, 35 p. (2020). MSC: 35R60 35K57 35B35 35C07 60H15 PDF BibTeX XML Cite \textit{C. H. S. Hamster} and \textit{H. J. Hupkes}, Physica D 401, Article ID 132233, 35 p. (2020; Zbl 1453.35202) Full Text: DOI arXiv OpenURL
Bruzón, María-Santos; Recio, Elena; Garrido, Tamara-María; de la Rosa, Rafael Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. (English) Zbl 1455.35218 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2691-2701 (2020). MSC: 35Q53 35B06 35L65 35C07 17B81 PDF BibTeX XML Cite \textit{M.-S. Bruzón} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2691--2701 (2020; Zbl 1455.35218) Full Text: DOI OpenURL
El Achab, Abdelfattah New Weierstrass elliptic wave solutions of the Davey-Stewartson equation with power law nonlinearity. (English) Zbl 1455.35219 Appl. Math. 47, No. 2, 165-182 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35Q51 37K10 35C07 33E05 PDF BibTeX XML Cite \textit{A. El Achab}, Appl. Math. 47, No. 2, 165--182 (2020; Zbl 1455.35219) Full Text: DOI OpenURL
Simpson, Matthew J. Critical length for the spreading-vanishing dichotomy in higher dimensions. (English) Zbl 1448.35522 ANZIAM J. 62, No. 1, 3-17 (2020). MSC: 35Q92 92D25 92C37 80A22 35R37 35C07 PDF BibTeX XML Cite \textit{M. J. Simpson}, ANZIAM J. 62, No. 1, 3--17 (2020; Zbl 1448.35522) Full Text: DOI arXiv OpenURL
Popivanov, Petar; Slavova, Angela Explicit solutions of the hyperbolic Monge-Ampere type equation, of a nonlinear evolution system and their qualitative properties. (English) Zbl 1463.35352 C. R. Acad. Bulg. Sci. 73, No. 6, 767-775 (2020). Reviewer: Ivan Landjev (Sofia) MSC: 35L70 35Q55 35A30 35C05 37K10 81Q05 PDF BibTeX XML Cite \textit{P. Popivanov} and \textit{A. Slavova}, C. R. Acad. Bulg. Sci. 73, No. 6, 767--775 (2020; Zbl 1463.35352) Full Text: DOI OpenURL
Lorenzi, Tommaso; Murray, Philip J.; Ptashnyk, Mariya From individual-based mechanical models of multicellular systems to free-boundary problems. (English) Zbl 1446.35225 Interfaces Free Bound. 22, No. 2, 205-244 (2020). MSC: 35Q92 92C10 35C07 35R35 92-08 35A01 35R09 92C37 74B20 PDF BibTeX XML Cite \textit{T. Lorenzi} et al., Interfaces Free Bound. 22, No. 2, 205--244 (2020; Zbl 1446.35225) Full Text: DOI arXiv OpenURL
Seadawy, Aly R.; Alamri, Sultan Z.; Al-Sharari, Haya M. Construction of optical soliton solutions of the generalized nonlinear Radhakrishnan-Kundu-Lakshmanan dynamical equation with power law nonlinearity. (English) Zbl 1439.35445 Int. J. Mod. Phys. B 34, No. 13, Article ID 2050139, 17 p. (2020). MSC: 35Q55 78A60 35C07 35C08 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Int. J. Mod. Phys. B 34, No. 13, Article ID 2050139, 17 p. (2020; Zbl 1439.35445) Full Text: DOI OpenURL
Ma, Manjun; Zhang, Qiming; Yue, Jiajun; Ou, Chunhua Bistable wave speed of the Lotka-Volterra competition model. (English) Zbl 1448.92230 J. Biol. Dyn. 14, No. 1, 608-620 (2020). MSC: 92D25 35C07 35Q92 PDF BibTeX XML Cite \textit{M. Ma} et al., J. Biol. Dyn. 14, No. 1, 608--620 (2020; Zbl 1448.92230) Full Text: DOI OpenURL
Thabet, Hayman; Kendre, Subhash; Peters, James; Kaplan, Melike Solitary wave solutions and traveling wave solutions for systems of time-fractional nonlinear wave equations via an analytical approach. (English) Zbl 1449.93123 Comput. Appl. Math. 39, No. 3, Paper No. 144, 19 p. (2020). MSC: 93C20 93C10 35R11 35C07 PDF BibTeX XML Cite \textit{H. Thabet} et al., Comput. Appl. Math. 39, No. 3, Paper No. 144, 19 p. (2020; Zbl 1449.93123) Full Text: DOI OpenURL
Volpert, V. Existence of waves for a bistable reaction-diffusion system with delay. (English) Zbl 1442.35213 J. Dyn. Differ. Equations 32, No. 2, 615-629 (2020). MSC: 35K57 35K40 35C07 35Q92 PDF BibTeX XML Cite \textit{V. Volpert}, J. Dyn. Differ. Equations 32, No. 2, 615--629 (2020; Zbl 1442.35213) Full Text: DOI OpenURL
Audrito, Alessandro; Vázquez, Juan Luis Travelling wave behaviour arising in nonlinear diffusion problems posed in tubular domains. (English) Zbl 1439.35257 J. Differ. Equations 269, No. 3, 2664-2696 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K57 35K65 35C07 35K55 PDF BibTeX XML Cite \textit{A. Audrito} and \textit{J. L. Vázquez}, J. Differ. Equations 269, No. 3, 2664--2696 (2020; Zbl 1439.35257) Full Text: DOI arXiv OpenURL
Cornwell, Paul; Jones, Christopher K. R. T. A stability index for travelling waves in activator-inhibitor systems. (English) Zbl 1436.35036 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 517-548 (2020). MSC: 35B35 53D12 35C07 PDF BibTeX XML Cite \textit{P. Cornwell} and \textit{C. K. R. T. Jones}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 517--548 (2020; Zbl 1436.35036) Full Text: DOI arXiv OpenURL
Gárriz, Alejandro Propagation of solutions of the porous medium equation with reaction and their travelling wave behaviour. (English) Zbl 1442.35196 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111736, 23 p. (2020). MSC: 35K55 35B40 35K65 76S05 PDF BibTeX XML Cite \textit{A. Gárriz}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111736, 23 p. (2020; Zbl 1442.35196) Full Text: DOI arXiv OpenURL
Tsai, Dong-Ho; Nien, Chia-Hsing On space-time periodic solutions of the one-dimensional heat equation. (English) Zbl 1439.35188 Discrete Contin. Dyn. Syst. 40, No. 6, 3997-4017 (2020). MSC: 35K05 35B10 PDF BibTeX XML Cite \textit{D.-H. Tsai} and \textit{C.-H. Nien}, Discrete Contin. Dyn. Syst. 40, No. 6, 3997--4017 (2020; Zbl 1439.35188) Full Text: DOI OpenURL
He, Chun-Lei; Huang, Shou-Jun; Wei, Changhua Stability of traveling wave for the relativistic string equation in De Sitter spacetime. (English) Zbl 1439.35468 J. Math. Phys. 61, No. 1, 011503, 10 p. (2020). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q75 35L71 83C10 35C07 74K05 PDF BibTeX XML Cite \textit{C.-L. He} et al., J. Math. Phys. 61, No. 1, 011503, 10 p. (2020; Zbl 1439.35468) Full Text: DOI OpenURL
Hupkes, H. J.; Morelli, L. Travelling corners for spatially discrete reaction-diffusion systems. (English) Zbl 1436.34009 Commun. Pure Appl. Anal. 19, No. 3, 1609-1667 (2020). MSC: 34A33 35C07 35B35 35K57 34C45 39A10 39A28 PDF BibTeX XML Cite \textit{H. J. Hupkes} and \textit{L. Morelli}, Commun. Pure Appl. Anal. 19, No. 3, 1609--1667 (2020; Zbl 1436.34009) Full Text: DOI arXiv OpenURL
Calvez, Vincent Chemotactic waves of bacteria at the mesoscale. (English) Zbl 1436.35301 J. Eur. Math. Soc. (JEMS) 22, No. 2, 593-668 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35C07 92C17 82C40 35K40 35K57 35R09 PDF BibTeX XML Cite \textit{V. Calvez}, J. Eur. Math. Soc. (JEMS) 22, No. 2, 593--668 (2020; Zbl 1436.35301) Full Text: DOI arXiv OpenURL
Contento, Lorenzo; Mimura, Masayasu Complex pattern formation driven by the interaction of stable fronts in a competition-diffusion system. (English) Zbl 1434.35252 J. Math. Biol. 80, No. 1-2, 303-342 (2020). MSC: 35Q92 92D25 35K57 35C07 35B36 92C15 35B32 PDF BibTeX XML Cite \textit{L. Contento} and \textit{M. Mimura}, J. Math. Biol. 80, No. 1--2, 303--342 (2020; Zbl 1434.35252) Full Text: DOI arXiv OpenURL
Gepreel, Khaled A.; Nofal, Taher A.; Al-Asmari, Amera A. Abundant travelling wave solutions for nonlinear Kawahara partial differential equation using extended trial equation method. (English) Zbl 07474836 Int. J. Comput. Math. 96, No. 7, 1357-1376 (2019). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{K. A. Gepreel} et al., Int. J. Comput. Math. 96, No. 7, 1357--1376 (2019; Zbl 07474836) Full Text: DOI OpenURL
Rombouts, Jan; Gelens, Lendert; Erneux, Thomas Travelling fronts in time-delayed reaction-diffusion systems. (English) Zbl 1464.35150 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 377, No. 2153, Article ID 20180127, 13 p. (2019). MSC: 35K57 35C07 35K58 PDF BibTeX XML Cite \textit{J. Rombouts} et al., Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 377, No. 2153, Article ID 20180127, 13 p. (2019; Zbl 1464.35150) Full Text: DOI OpenURL
Zhou, Yan; Song, Jie; Han, Tong Solitary waves, periodic peakons, pseudo-peakons and compactons given by three ion-acoustic wave models in electron plasmas. (English) Zbl 1459.34122 J. Appl. Anal. Comput. 9, No. 2, 810-828 (2019). MSC: 34C60 35Q51 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{Y. Zhou} et al., J. Appl. Anal. Comput. 9, No. 2, 810--828 (2019; Zbl 1459.34122) Full Text: DOI OpenURL
Chouder, Rafaa; Benhamidouche, Nouredine New exact solutions to nonlinear diffusion equation that occurs in image processing. (English) Zbl 1458.35101 Int. J. Comput. Sci. Math. 10, No. 4, 364-374 (2019). MSC: 35C05 35C07 35K65 94A08 PDF BibTeX XML Cite \textit{R. Chouder} and \textit{N. Benhamidouche}, Int. J. Comput. Sci. Math. 10, No. 4, 364--374 (2019; Zbl 1458.35101) Full Text: DOI OpenURL
Wattis, Jonathan A. D. Asymptotic approximations to travelling waves in the diatomic Fermi-pasta-Ulam lattice. (English) Zbl 1441.82014 Math. Eng. (Springfield) 1, No. 2, 327-342 (2019). MSC: 82C20 35Q53 35C07 PDF BibTeX XML Cite \textit{J. A. D. Wattis}, Math. Eng. (Springfield) 1, No. 2, 327--342 (2019; Zbl 1441.82014) Full Text: DOI OpenURL
Amtout, T.; Biyadi, H.; Er-Riani, M.; El Jarroudi, M. Lie group analysis for heat transfer in flow of second grade fluid. (English) Zbl 1441.76099 Int. J. Dyn. Syst. Differ. Equ. 9, No. 2, 164-175 (2019). MSC: 76M60 80A19 35C07 PDF BibTeX XML Cite \textit{T. Amtout} et al., Int. J. Dyn. Syst. Differ. Equ. 9, No. 2, 164--175 (2019; Zbl 1441.76099) Full Text: DOI OpenURL
Pan, Shuxia; Lin, Guo; Wang, Jingxuan Propagation thresholds of competitive integrodifference systems. (English) Zbl 1428.35072 J. Difference Equ. Appl. 25, No. 12, 1680-1705 (2019). MSC: 35C07 39A20 37C65 PDF BibTeX XML Cite \textit{S. Pan} et al., J. Difference Equ. Appl. 25, No. 12, 1680--1705 (2019; Zbl 1428.35072) Full Text: DOI OpenURL
Akers, Benjamin F.; Ambrose, David M.; Sulon, David W. Periodic travelling interfacial hydroelastic waves with or without mass. II: Multiple bifurcations and ripples. (English) Zbl 1427.76036 Eur. J. Appl. Math. 30, No. 4, 756-790 (2019). MSC: 76B15 76B25 35C07 35B32 35B10 PDF BibTeX XML Cite \textit{B. F. Akers} et al., Eur. J. Appl. Math. 30, No. 4, 756--790 (2019; Zbl 1427.76036) Full Text: DOI arXiv OpenURL
Bouin, Emeric; Caillerie, Nils Spreading in kinetic reaction-transport equations in higher velocity dimensions. (English) Zbl 1433.35415 Eur. J. Appl. Math. 30, No. 2, 219-247 (2019). MSC: 35Q92 35F21 45K05 35C07 92C45 92C17 PDF BibTeX XML Cite \textit{E. Bouin} and \textit{N. Caillerie}, Eur. J. Appl. Math. 30, No. 2, 219--247 (2019; Zbl 1433.35415) Full Text: DOI arXiv OpenURL
Hupkes, Hermen Jan; Morelli, Leonardo; Stehlík, Petr; Švígler, Vladimír Multichromatic travelling waves for lattice Nagumo equations. (English) Zbl 1428.34030 Appl. Math. Comput. 361, 430-452 (2019). MSC: 34A33 35K57 35C07 37L60 39A12 PDF BibTeX XML Cite \textit{H. J. Hupkes} et al., Appl. Math. Comput. 361, 430--452 (2019; Zbl 1428.34030) Full Text: DOI arXiv OpenURL
Ma, Manjun; Yue, Jiajun; Ou, Chunhua Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion equations. (English) Zbl 1427.35124 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2223, Article ID 20180898, 10 p. (2019). MSC: 35K57 35C07 PDF BibTeX XML Cite \textit{M. Ma} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2223, Article ID 20180898, 10 p. (2019; Zbl 1427.35124) Full Text: DOI Link OpenURL
Hupkes, Hermen Jan; Morelli, Leonardo; Stehlík, Petr Bichromatic travelling waves for lattice Nagumo equations. (English) Zbl 1428.34029 SIAM J. Appl. Dyn. Syst. 18, No. 2, 973-1014 (2019). MSC: 34A33 35C07 34K10 92C20 PDF BibTeX XML Cite \textit{H. J. Hupkes} et al., SIAM J. Appl. Dyn. Syst. 18, No. 2, 973--1014 (2019; Zbl 1428.34029) Full Text: DOI arXiv OpenURL
Al-Hdaibat, B.; Naser, M. F. M.; Safi, M. A. Degenerate Bogdanov-Takens bifurcations in the Gray-Scott model. (English) Zbl 1428.34051 Nonlinear Dyn. Syst. Theory 19, No. 2, 253-262 (2019). MSC: 34C23 35C07 34C45 34C20 34C05 PDF BibTeX XML Cite \textit{B. Al-Hdaibat} et al., Nonlinear Dyn. Syst. Theory 19, No. 2, 253--262 (2019; Zbl 1428.34051) OpenURL
Salako, Rachidi B.; Shen, Wenxian; Xue, Shuwen Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source? (English) Zbl 1479.35116 J. Math. Biol. 79, No. 4, 1455-1490 (2019). Reviewer: Evangelos Latos (Graz) MSC: 35B40 35B35 35K57 92C17 35K45 35K59 35C07 PDF BibTeX XML Cite \textit{R. B. Salako} et al., J. Math. Biol. 79, No. 4, 1455--1490 (2019; Zbl 1479.35116) Full Text: DOI arXiv OpenURL
Nagatou, K.; Plum, M.; McKenna, P. J. Orbital stability investigations for travelling waves in a nonlinearly supported beam. (English) Zbl 1472.35039 J. Differ. Equations 268, No. 1, 80-114 (2019). Reviewer: Nicolae Cîndea (Aubière) MSC: 35B35 37C75 35L76 35C07 74K10 PDF BibTeX XML Cite \textit{K. Nagatou} et al., J. Differ. Equations 268, No. 1, 80--114 (2019; Zbl 1472.35039) Full Text: DOI OpenURL
Bennett, Jamie J. R.; Sherratt, Jonathan A. Long-distance seed dispersal affects the resilience of banded vegetation patterns in semi-deserts. (English) Zbl 1422.92183 J. Theor. Biol. 481, 151-161 (2019). MSC: 92D40 92C80 35Q92 35C07 PDF BibTeX XML Cite \textit{J. J. R. Bennett} and \textit{J. A. Sherratt}, J. Theor. Biol. 481, 151--161 (2019; Zbl 1422.92183) Full Text: DOI OpenURL
Gavagnin, Enrico; Ford, Matthew J.; Mort, Richard L.; Rogers, Tim; Yates, Christian A. The invasion speed of cell migration models with realistic cell cycle time distributions. (English) Zbl 1422.92022 J. Theor. Biol. 481, 91-99 (2019). MSC: 92C17 92C15 35C07 35Q92 PDF BibTeX XML Cite \textit{E. Gavagnin} et al., J. Theor. Biol. 481, 91--99 (2019; Zbl 1422.92022) Full Text: DOI arXiv Link OpenURL
Hupkes, Hermen Jan; Morelli, Leonardo; Stehlík, Petr; Švígler, Vladimír Counting and ordering periodic stationary solutions of lattice Nagumo equations. (English) Zbl 1423.92258 Appl. Math. Lett. 98, 398-405 (2019). MSC: 92E20 35K57 35B10 35C07 PDF BibTeX XML Cite \textit{H. J. Hupkes} et al., Appl. Math. Lett. 98, 398--405 (2019; Zbl 1423.92258) Full Text: DOI arXiv OpenURL
Dean, Andrew D.; Horsburgh, Malcolm J.; Vasiev, Bakhti Toxin-mediated competition in weakly motile bacteria. (English) Zbl 1420.92119 J. Theor. Biol. 480, 205-217 (2019). MSC: 92D40 92D25 35Q92 35C07 PDF BibTeX XML Cite \textit{A. D. Dean} et al., J. Theor. Biol. 480, 205--217 (2019; Zbl 1420.92119) Full Text: DOI arXiv OpenURL
Krupp, A. U.; Griffiths, I. M.; Please, C. P. Inferring filtration laws from the spreading of a liquid modelled by the porous medium equation. (English) Zbl 1419.35249 SIAM J. Appl. Math. 79, No. 4, 1389-1404 (2019). MSC: 35R30 35B40 35G20 35Q35 76S05 PDF BibTeX XML Cite \textit{A. U. Krupp} et al., SIAM J. Appl. Math. 79, No. 4, 1389--1404 (2019; Zbl 1419.35249) Full Text: DOI OpenURL
Kolebaje, Olusola; Bonyah, Ebenezer; Mustapha, Lateef The first integral method for two fractional non-linear biological models. (English) Zbl 1421.92011 Discrete Contin. Dyn. Syst., Ser. S 12, No. 3, 487-502 (2019). MSC: 92C35 76Z05 35C07 35Q51 PDF BibTeX XML Cite \textit{O. Kolebaje} et al., Discrete Contin. Dyn. Syst., Ser. S 12, No. 3, 487--502 (2019; Zbl 1421.92011) Full Text: DOI OpenURL
Antonopoulos, D. C.; Dougalis, V. A.; Mitsotakis, D. E. Error estimates for Galerkin finite element methods for the Camassa-Holm equation. (English) Zbl 1419.65050 Numer. Math. 142, No. 4, 833-862 (2019). MSC: 65M60 65L06 35Q53 35C07 35C08 65D07 PDF BibTeX XML Cite \textit{D. C. Antonopoulos} et al., Numer. Math. 142, No. 4, 833--862 (2019; Zbl 1419.65050) Full Text: DOI arXiv OpenURL
Garrido, T. M.; de la Rosa, R.; Recio, E.; Bruzón, M. S. Symmetries, solutions and conservation laws for the \((2+1)\) filtration-absorption model. (English) Zbl 1416.92196 J. Math. Chem. 57, No. 5, 1301-1313 (2019). MSC: 92E20 76S05 35C07 PDF BibTeX XML Cite \textit{T. M. Garrido} et al., J. Math. Chem. 57, No. 5, 1301--1313 (2019; Zbl 1416.92196) Full Text: DOI OpenURL
Davis, P. N.; van Heijster, P.; Marangell, R. Spectral stability of travelling wave solutions in a Keller-Segel model. (English) Zbl 1418.92016 Appl. Numer. Math. 141, 54-61 (2019). MSC: 92C17 35C07 35B35 35Q92 PDF BibTeX XML Cite \textit{P. N. Davis} et al., Appl. Numer. Math. 141, 54--61 (2019; Zbl 1418.92016) Full Text: DOI arXiv OpenURL
Audrito, Alessandro Bistable reaction equations with doubly nonlinear diffusion. (English) Zbl 1415.35160 Discrete Contin. Dyn. Syst. 39, No. 6, 2977-3015 (2019). MSC: 35K57 35K65 35C07 PDF BibTeX XML Cite \textit{A. Audrito}, Discrete Contin. Dyn. Syst. 39, No. 6, 2977--3015 (2019; Zbl 1415.35160) Full Text: DOI arXiv OpenURL
Zhang, Li; Pan, Shuxia Entire solutions of integrodifference equations. (English) Zbl 1414.39007 J. Difference Equ. Appl. 25, No. 4, 504-515 (2019). MSC: 39A14 39A12 45J99 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{S. Pan}, J. Difference Equ. Appl. 25, No. 4, 504--515 (2019; Zbl 1414.39007) Full Text: DOI OpenURL
Hu, Wenjie Travelling waves for a nonlocal delay differential equation. (English) Zbl 1417.37261 Bull. Iran. Math. Soc. 45, No. 3, 791-798 (2019). MSC: 37L05 37L15 92D25 74J30 35C07 PDF BibTeX XML Cite \textit{W. Hu}, Bull. Iran. Math. Soc. 45, No. 3, 791--798 (2019; Zbl 1417.37261) Full Text: DOI OpenURL
Abi Rizk, L.; Burie, J.-B.; Ducrot, A. Travelling wave solutions for a non-local evolutionary-epidemic system. (English) Zbl 1416.35271 J. Differ. Equations 267, No. 2, 1467-1509 (2019). MSC: 35Q92 35C07 92C80 35B40 92D30 PDF BibTeX XML Cite \textit{L. Abi Rizk} et al., J. Differ. Equations 267, No. 2, 1467--1509 (2019; Zbl 1416.35271) Full Text: DOI OpenURL
Graham, Cole Precise asymptotics for Fisher-KPP fronts. (English) Zbl 1411.35158 Nonlinearity 32, No. 6, 1967-1998 (2019). MSC: 35K57 35B40 35C07 35K91 PDF BibTeX XML Cite \textit{C. Graham}, Nonlinearity 32, No. 6, 1967--1998 (2019; Zbl 1411.35158) Full Text: DOI arXiv OpenURL
Bennett, Jamie J. R.; Sherratt, Jonathan A. How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems? (English) Zbl 1411.92242 Appl. Math. Lett. 94, 80-86 (2019). MSC: 92D25 92D40 35C07 PDF BibTeX XML Cite \textit{J. J. R. Bennett} and \textit{J. A. Sherratt}, Appl. Math. Lett. 94, 80--86 (2019; Zbl 1411.92242) Full Text: DOI OpenURL
Bouhours, Juliette; Giletti, Thomas Spreading and vanishing for a monostable reaction-diffusion equation with forced speed. (English) Zbl 07047666 J. Dyn. Differ. Equations 31, No. 1, 247-286 (2019). MSC: 35B40 35C07 35K15 35K57 92D25 PDF BibTeX XML Cite \textit{J. Bouhours} and \textit{T. Giletti}, J. Dyn. Differ. Equations 31, No. 1, 247--286 (2019; Zbl 07047666) Full Text: DOI arXiv OpenURL
Nuruddeen, Rahmatullah Ibrahim; Aboodh, Khalid Suliman; Ali, Khalid K. Constructing logistic function-type solitary wave solutions to Burgers and Sharma-Tasso-Olver equations. (English) Zbl 1412.35056 Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 5, 5 p. (2019). MSC: 35C08 35Q53 35C07 PDF BibTeX XML Cite \textit{R. I. Nuruddeen} et al., Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 5, 5 p. (2019; Zbl 1412.35056) Full Text: DOI OpenURL
Postlethwaite, Claire M.; Rucklidge, Alastair M. A trio of heteroclinic bifurcations arising from a model of spatially-extended Rock-Paper-Scissors. (English) Zbl 1412.37055 Nonlinearity 32, No. 4, 1375-1407 (2019). Reviewer: Valery A. Gaiko (Minsk) MSC: 37G15 37C29 34C37 35C07 91A22 92D25 PDF BibTeX XML Cite \textit{C. M. Postlethwaite} and \textit{A. M. Rucklidge}, Nonlinearity 32, No. 4, 1375--1407 (2019; Zbl 1412.37055) Full Text: DOI arXiv OpenURL
Malinzi, Joseph; Amima, Innocenter Mathematical analysis of a tumour-immune interaction model: a moving boundary problem. (English) Zbl 1408.35231 Math. Biosci. 308, 8-19 (2019). MSC: 35R37 35Q92 92C50 92D25 PDF BibTeX XML Cite \textit{J. Malinzi} and \textit{I. Amima}, Math. Biosci. 308, 8--19 (2019; Zbl 1408.35231) Full Text: DOI OpenURL
Wang, Wei; Ma, Wanbiao Block effect on HCV infection by HMGB1 released from virus-infected cells: an insight from mathematical modeling. (English) Zbl 07263360 Commun. Nonlinear Sci. Numer. Simul. 59, 488-514 (2018). MSC: 92Dxx 35Qxx PDF BibTeX XML Cite \textit{W. Wang} and \textit{W. Ma}, Commun. Nonlinear Sci. Numer. Simul. 59, 488--514 (2018; Zbl 07263360) Full Text: DOI OpenURL
Liang, Juhua; Zhu, Yaohua; Xiang, Changcheng; Tang, Sanyi Travelling waves and paradoxical effects in a discrete-time growth-dispersal model. (English) Zbl 1480.92171 Appl. Math. Modelling 59, 132-146 (2018). MSC: 92D25 34A37 35C07 PDF BibTeX XML Cite \textit{J. Liang} et al., Appl. Math. Modelling 59, 132--146 (2018; Zbl 1480.92171) Full Text: DOI OpenURL
Wang, Danli Existence of travelling wave fronts of two-dimensional reaction-diffusion systems. (Chinese. English summary) Zbl 1424.35098 J. Guangzhou Univ., Nat. Sci. 17, No. 4, 21-29 (2018). MSC: 35C07 35K57 PDF BibTeX XML Cite \textit{D. Wang}, J. Guangzhou Univ., Nat. Sci. 17, No. 4, 21--29 (2018; Zbl 1424.35098) OpenURL
Wang, Wei; Ma, Wanbiao Hepatitis C virus infection is blocked by HMGB1: a new nonlocal and time-delayed reaction-diffusion model. (English) Zbl 1426.92015 Appl. Math. Comput. 320, 633-653 (2018). MSC: 92C30 PDF BibTeX XML Cite \textit{W. Wang} and \textit{W. Ma}, Appl. Math. Comput. 320, 633--653 (2018; Zbl 1426.92015) Full Text: DOI OpenURL
Abdul Hussain, Mudhir Abdul Wahid Lyapunov-Schmidt reduction in the study of bifurcation solutions of nonlinear fractional differential equation. (English) Zbl 1415.35031 Appl. Math. E-Notes 18, 219-226 (2018). MSC: 35B32 35R11 35C07 PDF BibTeX XML Cite \textit{M. A. W. Abdul Hussain}, Appl. Math. E-Notes 18, 219--226 (2018; Zbl 1415.35031) Full Text: Link OpenURL
Yang, Gaoxiang; Zhao, Linlong Existence of a travelling wave solution for a single population model with spatio-temporal delay. (Chinese. English summary) Zbl 1424.35099 J. East China Norm. Univ., Nat. Sci. Ed. 2018, No. 4, 1-8 (2018). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{G. Yang} and \textit{L. Zhao}, J. East China Norm. Univ., Nat. Sci. Ed. 2018, No. 4, 1--8 (2018; Zbl 1424.35099) Full Text: DOI OpenURL
Wang, Wei; Ma, Wanbiao Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. (English) Zbl 1406.35441 Discrete Contin. Dyn. Syst., Ser. B 23, No. 8, 3213-3235 (2018). MSC: 35Q92 34D20 35C07 92C60 PDF BibTeX XML Cite \textit{W. Wang} and \textit{W. Ma}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 8, 3213--3235 (2018; Zbl 1406.35441) Full Text: DOI OpenURL
Lewis, Mark A.; Marculis, Nathan G.; Shen, Zhongwei Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics. (English) Zbl 1404.92156 J. Math. Biol. 77, No. 6-7, 1649-1687 (2018). MSC: 92D25 92D40 35C07 39A10 92D15 45J05 PDF BibTeX XML Cite \textit{M. A. Lewis} et al., J. Math. Biol. 77, No. 6--7, 1649--1687 (2018; Zbl 1404.92156) Full Text: DOI OpenURL
Valls, Claudia Algebraic travelling waves for the generalized Burgers-Fisher equation. (English) Zbl 1461.34068 Quaest. Math. 41, No. 7, 903-916 (2018). MSC: 34C37 34A05 35C07 34B40 34C45 PDF BibTeX XML Cite \textit{C. Valls}, Quaest. Math. 41, No. 7, 903--916 (2018; Zbl 1461.34068) Full Text: DOI OpenURL
Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J. Evans function computation for the stability of travelling waves. (English) Zbl 1402.65052 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170184, 25 p. (2018). MSC: 65L05 34B15 35C07 35Q30 35B35 PDF BibTeX XML Cite \textit{B. Barker} et al., Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170184, 25 p. (2018; Zbl 1402.65052) Full Text: DOI OpenURL
Xu, Haitao; Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Vainchtein, Anna An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices. (English) Zbl 1402.37086 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170192, 26 p. (2018). MSC: 37K60 37K40 35C07 35C08 PDF BibTeX XML Cite \textit{H. Xu} et al., Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170192, 26 p. (2018; Zbl 1402.37086) Full Text: DOI arXiv OpenURL