Zhang, Guoqing; Li, Yawen Normalized ground state traveling solitary waves for the half-wave equations with combined nonlinearities. (English) Zbl 07550876 Z. Angew. Math. Phys. 73, No. 4, Paper No. 142, 27 p. (2022). MSC: 35Q55 35Q41 35C07 35C08 35A01 35B33 49J35 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Y. Li}, Z. Angew. Math. Phys. 73, No. 4, Paper No. 142, 27 p. (2022; Zbl 07550876) Full Text: DOI OpenURL
Zillu, Md. Mohiuddin; Bashar, Md. Habibul Novel solitary wave and lump wave solution in fluid dynamics. (English) Zbl 07545196 Appl. Anal. Optim. 6, No. 1, 149-167 (2022). MSC: 35Q51 76B15 PDF BibTeX XML Cite \textit{Md. M. Zillu} and \textit{Md. H. Bashar}, Appl. Anal. Optim. 6, No. 1, 149--167 (2022; Zbl 07545196) Full Text: Link OpenURL
Henry, David Energy considerations for nonlinear equatorial water waves. (English) Zbl 07545179 Commun. Pure Appl. Anal. 21, No. 7, 2337-2356 (2022). MSC: 35Q35 35Q86 35Q31 76B15 35C07 35B10 PDF BibTeX XML Cite \textit{D. Henry}, Commun. Pure Appl. Anal. 21, No. 7, 2337--2356 (2022; Zbl 07545179) Full Text: DOI OpenURL
Bak, Sergiy M.; Kovtonyuk, Galyna M. Existence of periodic traveling waves in Fermi-Pasta-Ulam type systems on 2D-lattice with saturable nonlinearities. (English) Zbl 07542532 J. Math. Sci., New York 260, No. 5, 619-629 (2022) and Ukr. Mat. Visn. 18, No. 4, 466-478 (2021). MSC: 37Kxx 34Axx 34Cxx PDF BibTeX XML Cite \textit{S. M. Bak} and \textit{G. M. Kovtonyuk}, J. Math. Sci., New York 260, No. 5, 619--629 (2022; Zbl 07542532) Full Text: DOI OpenURL
Arafat, S. M. Yiasir; Islam, S. M. Rayhanul; Bashar, Md Habibul Influence of the free parameters and obtained wave solutions from CBS equation. (English) Zbl 07541709 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 99, 17 p. (2022). MSC: 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{S. M. Y. Arafat} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 99, 17 p. (2022; Zbl 07541709) Full Text: DOI OpenURL
Zhao, Xu-Dong; Yang, Fei-Ying; Li, Wan-Tong Traveling waves for a nonlocal dispersal predator-prey model with two preys and one predator. (English) Zbl 07541207 Z. Angew. Math. Phys. 73, No. 3, Paper No. 124, 29 p. (2022). MSC: 35C07 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{X.-D. Zhao} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 124, 29 p. (2022; Zbl 07541207) Full Text: DOI OpenURL
Zhang, Yafei; Wu, Shi-Liang Minimal-speed selection of traveling fronts to a three components lattice competition system. (English) Zbl 07539617 Int. J. Biomath. 15, No. 4, Article ID 2250016, 25 p. (2022). MSC: 37L60 35K57 92D25 35B20 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{S.-L. Wu}, Int. J. Biomath. 15, No. 4, Article ID 2250016, 25 p. (2022; Zbl 07539617) Full Text: DOI OpenURL
Pan, Chaohong; Wang, Hongyong; Ou, Chunhua Invasive speed for a competition-diffusion system with three species. (English) Zbl 07536456 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3515-3532 (2022). MSC: 35C07 35K45 35K57 37C65 92D25 PDF BibTeX XML Cite \textit{C. Pan} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3515--3532 (2022; Zbl 07536456) Full Text: DOI OpenURL
Hakkaev, Sevdzhan; Ramadan, Abba; Stefanov, Atanas G. On the stability of the compacton waves for the degenerate KdV and NLS models. (English) Zbl 07535783 Q. Appl. Math. 80, No. 3, 507-528 (2022). MSC: 35Q55 35Q53 35Q41 35B35 35C07 PDF BibTeX XML Cite \textit{S. Hakkaev} et al., Q. Appl. Math. 80, No. 3, 507--528 (2022; Zbl 07535783) Full Text: DOI OpenURL
Wu, Shi-Liang; Zhang, Xiao Propagation dynamics for a periodic delayed lattice differential equation without quasi-monotonicity. (English) Zbl 07526834 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106414, 14 p. (2022). MSC: 34A33 34K13 35R10 PDF BibTeX XML Cite \textit{S.-L. Wu} and \textit{X. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106414, 14 p. (2022; Zbl 07526834) Full Text: DOI OpenURL
Hupkes, H. J.; Van Vleck, E. S. Travelling waves for adaptive grid discretizations of reaction diffusion systems. I: Well-posedness. (English) Zbl 07522537 J. Dyn. Differ. Equations 34, No. 2, 1505-1599 (2022). MSC: 34K31 34C37 34E15 35C07 35K57 PDF BibTeX XML Cite \textit{H. J. Hupkes} and \textit{E. S. Van Vleck}, J. Dyn. Differ. Equations 34, No. 2, 1505--1599 (2022; Zbl 07522537) Full Text: DOI OpenURL
Blagoveshchensky, A. S.; Zlobina, E. A.; Kiselev, A. P. Two-dimensional analogs of the classical Bateman wave are solutions of problems with moving sources. (English. Russian original) Zbl 07517592 Differ. Equ. 58, No. 2, 275-279 (2022); translation from Differ. Uravn. 58, No. 2, 270-274 (2022). MSC: 35L05 35A08 PDF BibTeX XML Cite \textit{A. S. Blagoveshchensky} et al., Differ. Equ. 58, No. 2, 275--279 (2022; Zbl 07517592); translation from Differ. Uravn. 58, No. 2, 270--274 (2022) Full Text: DOI OpenURL
Almeida, Luis; Estrada, Jorge; Vauchelet, Nicolas The sterile insect technique used as a barrier control against reinfestation. (English) Zbl 07516512 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 91-111 (2022). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{L. Almeida} et al., Radon Ser. Comput. Appl. Math. 29, 91--111 (2022; Zbl 07516512) Full Text: DOI OpenURL
Cucchi, Alessandro; Mellet, Antoine; Meunier, Nicolas Self polarization and traveling wave in a model for cell crawling migration. (English) Zbl 07513975 Discrete Contin. Dyn. Syst. 42, No. 5, 2381-2407 (2022). MSC: 35R35 35B32 35C07 92C17 PDF BibTeX XML Cite \textit{A. Cucchi} et al., Discrete Contin. Dyn. Syst. 42, No. 5, 2381--2407 (2022; Zbl 07513975) Full Text: DOI OpenURL
Manna, Kalyan; Banerjee, Malay Spatiotemporal pattern formation in a prey-predator model with generalist predator. (English) Zbl 07512755 Math. Model. Nat. Phenom. 17, Paper No. 6, 25 p. (2022). MSC: 35B36 35C07 35K51 35K57 37G15 92C15 PDF BibTeX XML Cite \textit{K. Manna} and \textit{M. Banerjee}, Math. Model. Nat. Phenom. 17, Paper No. 6, 25 p. (2022; Zbl 07512755) Full Text: DOI OpenURL
Abi Younes, G.; El Khatib, N. Mathematical modeling of inflammatory processes of atherosclerosis. (English) Zbl 07512754 Math. Model. Nat. Phenom. 17, Paper No. 5, 39 p. (2022). MSC: 35Qxx 35K57 35C07 PDF BibTeX XML Cite \textit{G. Abi Younes} and \textit{N. El Khatib}, Math. Model. Nat. Phenom. 17, Paper No. 5, 39 p. (2022; Zbl 07512754) Full Text: DOI OpenURL
Li, Tong; Park, Jeungeun Traveling waves in a Keller-Segel model with logistic growth. (English) Zbl 1484.35112 Commun. Math. Sci. 20, No. 3, 829-853 (2022). MSC: 35C07 35K57 92C17 PDF BibTeX XML Cite \textit{T. Li} and \textit{J. Park}, Commun. Math. Sci. 20, No. 3, 829--853 (2022; Zbl 1484.35112) Full Text: DOI OpenURL
Daíz Palencia, José Luis Analysis and instabilities of travelling waves solutions for a free boundary problem with non-homogeneous KPP reaction, with degenerate diffusion and with non-linear advection. (English) Zbl 07511808 Dyn. Syst. 37, No. 1, 83-104 (2022). MSC: 35C07 35B35 35K30 35K58 35K91 PDF BibTeX XML Cite \textit{J. L. Daíz Palencia}, Dyn. Syst. 37, No. 1, 83--104 (2022; Zbl 07511808) Full Text: DOI OpenURL
Bak, Sergiy Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice. (English) Zbl 07511504 Arch. Math., Brno 58, No. 1, 1-13 (2022). MSC: 34C15 37K58 37K60 74J30 PDF BibTeX XML Cite \textit{S. Bak}, Arch. Math., Brno 58, No. 1, 1--13 (2022; Zbl 07511504) Full Text: DOI OpenURL
Seadawy, Aly R.; Ahmed, S.; Rizvi, Syed T. R.; Ali, K. Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics. (English) Zbl 07510797 J. Geom. Phys. 176, Article ID 104507, 22 p. (2022). MSC: 35Q51 35Q60 35C08 35C07 78A40 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., J. Geom. Phys. 176, Article ID 104507, 22 p. (2022; Zbl 07510797) Full Text: DOI OpenURL
Mendible, Ariana; Lowrie, Weston; Brunton, Steven L.; Kutz, J. Nathan Data-driven modeling of two-dimensional detonation wave fronts. (English) Zbl 07508666 Wave Motion 109, Article ID 102879, 17 p. (2022). MSC: 76-XX 74-XX PDF BibTeX XML Cite \textit{A. Mendible} et al., Wave Motion 109, Article ID 102879, 17 p. (2022; Zbl 07508666) Full Text: DOI OpenURL
Miloh, Touvia Induced-charge electroosmosis, polarization, electrorotation, and traveling-wave electrophoresis of Horn toroidal particles. (English) Zbl 07507204 J. Eng. Math. 133, Paper No. 7, 13 p. (2022). MSC: 78A57 78A35 78A40 76D07 35Q60 PDF BibTeX XML Cite \textit{T. Miloh}, J. Eng. Math. 133, Paper No. 7, 13 p. (2022; Zbl 07507204) Full Text: DOI OpenURL
Leach, J. A.; Bassom, Andrew P. Long-time solutions of scalar hyperbolic reaction equations incorporating relaxation and the Arrhenius combustion nonlinearity. (English) Zbl 07506431 IMA J. Appl. Math. 87, No. 1, 111-128 (2022). MSC: 35L71 35L15 35B40 35C07 80A25 PDF BibTeX XML Cite \textit{J. A. Leach} and \textit{A. P. Bassom}, IMA J. Appl. Math. 87, No. 1, 111--128 (2022; Zbl 07506431) Full Text: DOI OpenURL
Moraes, Gabriel E. Bittencourt; de Loreno, Guilherme Cnoidal waves for the quintic Klein-Gordon and Schrödinger equations: existence and orbital instability. (English) Zbl 07506391 J. Math. Anal. Appl. 513, No. 1, Article ID 126203, 22 p. (2022). MSC: 35B35 35C07 35Q51 35Q53 35Q55 PDF BibTeX XML Cite \textit{G. E. B. Moraes} and \textit{G. de Loreno}, J. Math. Anal. Appl. 513, No. 1, Article ID 126203, 22 p. (2022; Zbl 07506391) Full Text: DOI OpenURL
Huang, Mingdi; Wu, Shi-Liang; Zhao, Xiao-Qiang Propagation dynamics for time-periodic and partially degenerate reaction-diffusion systems. (English) Zbl 07504988 SIAM J. Math. Anal. 54, No. 2, 1860-1897 (2022). MSC: 35C07 35B40 35K57 34K30 92D25 92D30 PDF BibTeX XML Cite \textit{M. Huang} et al., SIAM J. Math. Anal. 54, No. 2, 1860--1897 (2022; Zbl 07504988) Full Text: DOI OpenURL
Deng, Dong; Wang, Jie; Zhang, Liang Critical periodic traveling waves for a Kermack-McKendrick epidemic model with diffusion and seasonality. (English) Zbl 07503651 J. Differ. Equations 322, 365-395 (2022). MSC: 35C07 35B40 35K40 35K57 92D30 PDF BibTeX XML Cite \textit{D. Deng} et al., J. Differ. Equations 322, 365--395 (2022; Zbl 07503651) Full Text: DOI OpenURL
Guo, Yingxin; Ge, Shuzhi Sam; Arbi, Adnène Stability of traveling waves solutions for nonlinear cellular neural networks with distributed delays. (English) Zbl 1485.93487 J. Syst. Sci. Complex. 35, No. 1, 18-31 (2022). MSC: 93D23 93C20 35C07 93B70 PDF BibTeX XML Cite \textit{Y. Guo} et al., J. Syst. Sci. Complex. 35, No. 1, 18--31 (2022; Zbl 1485.93487) Full Text: DOI OpenURL
Haziot, Susanna V.; Hur, Vera Mikyoung; Strauss, Walter A.; Toland, J. F.; Wahlén, Erik; Walsh, Samuel; Wheeler, Miles H. Traveling water waves – the ebb and flow of two centuries. (English) Zbl 07502109 Q. Appl. Math. 80, No. 2, 317-401 (2022). MSC: 35Q35 35Q31 76-02 76B15 76B25 76B47 35C07 PDF BibTeX XML Cite \textit{S. V. Haziot} et al., Q. Appl. Math. 80, No. 2, 317--401 (2022; Zbl 07502109) Full Text: DOI OpenURL
Hu, Yuxi; Wang, Zhao Linear stability of viscous shock wave for 1-D compressible Navier-Stokes equations with Maxwell’s law. (English) Zbl 07502105 Q. Appl. Math. 80, No. 2, 221-235 (2022). MSC: 35Q30 76N10 76L05 35B35 35B40 35C07 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{Z. Wang}, Q. Appl. Math. 80, No. 2, 221--235 (2022; Zbl 07502105) Full Text: DOI OpenURL
Boyle, Latham; Finn, Kieran; Turok, Neil The big bang, CPT, and neutrino dark matter. (English) Zbl 07498382 Ann. Phys. 438, Article ID 168767, 35 p. (2022). MSC: 83C56 83E05 83F05 81V15 83C45 70H33 80A10 81V22 83C35 35C07 35B20 PDF BibTeX XML Cite \textit{L. Boyle} et al., Ann. Phys. 438, Article ID 168767, 35 p. (2022; Zbl 07498382) Full Text: DOI OpenURL
Khorbatly, Bashar; Lteif, Ralph; Israwi, Samer; Gerbi, Stéphane Mathematical modeling and numerical analysis for the higher order Boussinesq system. (English) Zbl 07488344 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593-615 (2022). MSC: 35Q35 35L45 35L60 76B25 76B45 76B55 35C07 35B40 35A01 35A02 65L99 PDF BibTeX XML Cite \textit{B. Khorbatly} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 593--615 (2022; Zbl 07488344) Full Text: DOI arXiv OpenURL
Xu, Zhaoquan; Xiao, Dongmei Propagation dynamics in an integro-differential Fisher-KPP equation with degenerated reaction functions. (English) Zbl 1484.35117 J. Differ. Equations 316, 197-221 (2022). MSC: 35C07 35K57 35R09 35R10 45G10 92D25 PDF BibTeX XML Cite \textit{Z. Xu} and \textit{D. Xiao}, J. Differ. Equations 316, 197--221 (2022; Zbl 1484.35117) Full Text: DOI OpenURL
Kiselev, V. V.; Batalov, S. V. Relaxing solitons of a biaxial ferromagnet. (English. Russian original) Zbl 07483561 Theor. Math. Phys. 210, No. 1, 46-67 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 54-79 (2022). MSC: 82D40 35C08 35C07 35B40 41A60 37K10 35Q82 PDF BibTeX XML Cite \textit{V. V. Kiselev} and \textit{S. V. Batalov}, Theor. Math. Phys. 210, No. 1, 46--67 (2022; Zbl 07483561); translation from Teor. Mat. Fiz. 210, No. 1, 54--79 (2022) Full Text: DOI OpenURL
Ma, Hongcai; Yue, Shupan; Deng, Aiping D’Alembert wave, the Hirota conditions and soliton molecule of a new generalized KdV equation. (English) Zbl 07482857 J. Geom. Phys. 172, Article ID 104413, 10 p. (2022). MSC: 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{H. Ma} et al., J. Geom. Phys. 172, Article ID 104413, 10 p. (2022; Zbl 07482857) Full Text: DOI OpenURL
Ducasse, Romain Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models. (English) Zbl 07482285 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112788, 34 p. (2022). Reviewer: Alla Boikova (Penza) MSC: 45M05 45M15 45D05 45B05 35R09 35B40 92D30 PDF BibTeX XML Cite \textit{R. Ducasse}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112788, 34 p. (2022; Zbl 07482285) Full Text: DOI arXiv OpenURL
Georgiev, Vladimir; Li, Yuan Nondispersive solutions to the mass critical half-wave equation in two dimensions. (English) Zbl 07481868 Commun. Partial Differ. Equations 47, No. 1, 39-88 (2022). MSC: 35Qxx 35Bxx 35Rxx PDF BibTeX XML Cite \textit{V. Georgiev} and \textit{Y. Li}, Commun. Partial Differ. Equations 47, No. 1, 39--88 (2022; Zbl 07481868) Full Text: DOI arXiv OpenURL
Wang, Ning; Wang, Zhi-Cheng Propagation dynamics of a nonlocal time-space periodic reaction-diffusion model with delay. (English) Zbl 1484.35115 Discrete Contin. Dyn. Syst. 42, No. 4, 1599-1646 (2022). MSC: 35C07 35B40 35K57 37N25 92D25 PDF BibTeX XML Cite \textit{N. Wang} and \textit{Z.-C. Wang}, Discrete Contin. Dyn. Syst. 42, No. 4, 1599--1646 (2022; Zbl 1484.35115) Full Text: DOI OpenURL
Kudryavtsev, A. G.; Myagkov, N. N. New solutions for the (3 + 1)-dimensional Charney-Obukhov equation. (English) Zbl 1485.81027 Phys. Lett., A 427, Article ID 127901, 4 p. (2022). MSC: 81Q05 35Q55 35C07 76M23 81V80 PDF BibTeX XML Cite \textit{A. G. Kudryavtsev} and \textit{N. N. Myagkov}, Phys. Lett., A 427, Article ID 127901, 4 p. (2022; Zbl 1485.81027) Full Text: DOI OpenURL
Wu, Ruiwen; Zhao, Xiao-Qiang The evolution dynamics of an impulsive hybrid population model with spatial heterogeneity. (English) Zbl 1482.35266 Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106181, 15 p. (2022). MSC: 35R12 35C07 35K57 35R09 37N25 92D25 PDF BibTeX XML Cite \textit{R. Wu} and \textit{X.-Q. Zhao}, Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106181, 15 p. (2022; Zbl 1482.35266) Full Text: DOI OpenURL
Cianfarani Carnevale, Giada; Lattanzio, Corrado; Mascia, Corrado Propagating fronts for a viscous Hamer-type system. (English) Zbl 1481.35274 Discrete Contin. Dyn. Syst. 42, No. 2, 605-621 (2022). MSC: 35L67 35A24 35B25 35B32 35C07 34E15 76N30 PDF BibTeX XML Cite \textit{G. Cianfarani Carnevale} et al., Discrete Contin. Dyn. Syst. 42, No. 2, 605--621 (2022; Zbl 1481.35274) Full Text: DOI arXiv OpenURL
Henry, David; Villari, Gabriele Flow underlying coupled surface and internal waves. (English) Zbl 1482.35170 J. Differ. Equations 310, 404-442 (2022). MSC: 35Q35 35Q86 76B15 76T06 86A05 37N10 35C07 74F10 PDF BibTeX XML Cite \textit{D. Henry} and \textit{G. Villari}, J. Differ. Equations 310, 404--442 (2022; Zbl 1482.35170) Full Text: DOI OpenURL
Moretlo, T. S.; Adem, A. R.; Muatjetjeja, B. A generalized \((1+2)\)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili (BKP) equation: multiple exp-function algorithm; conservation laws; similarity solutions. (English) Zbl 1479.35178 Commun. Nonlinear Sci. Numer. Simul. 106, Article ID 106072, 9 p. (2022). MSC: 35C05 35B06 35C07 35G25 PDF BibTeX XML Cite \textit{T. S. Moretlo} et al., Commun. Nonlinear Sci. Numer. Simul. 106, Article ID 106072, 9 p. (2022; Zbl 1479.35178) Full Text: DOI OpenURL
Stathas, Alexandros; Stefanou, Ioannis The role of viscous regularization in dynamical problems, strain localization and mesh dependency. (English) Zbl 07442764 Comput. Methods Appl. Mech. Eng. 388, Article ID 114185, 30 p. (2022). MSC: 74-XX 92-XX PDF BibTeX XML Cite \textit{A. Stathas} and \textit{I. Stefanou}, Comput. Methods Appl. Mech. Eng. 388, Article ID 114185, 30 p. (2022; Zbl 07442764) Full Text: DOI arXiv OpenURL
Qiao, Shao-Xia; Li, Wan-Tong; Wang, Jia-Bing Multi-type forced waves in nonlocal dispersal KPP equations with shifting habitats. (English) Zbl 1472.92258 J. Math. Anal. Appl. 505, No. 2, Article ID 125504, 14 p. (2022). MSC: 92D40 35C07 35K57 PDF BibTeX XML Cite \textit{S.-X. Qiao} et al., J. Math. Anal. Appl. 505, No. 2, Article ID 125504, 14 p. (2022; Zbl 1472.92258) Full Text: DOI OpenURL
Chen, Robin Ming; Jin, Jie Transverse instability of the CH-KP-I equation. (English) Zbl 07539514 Ann. Appl. Math. 37, No. 3, 337-362 (2021). MSC: 35B35 35C07 35G25 PDF BibTeX XML Cite \textit{R. M. Chen} and \textit{J. Jin}, Ann. Appl. Math. 37, No. 3, 337--362 (2021; Zbl 07539514) Full Text: DOI OpenURL
Ionescu-Kruse, Delia Fronts, pulses, and periodic travelling waves in two-component shallow water models. (English) Zbl 07523917 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 725-748 (2021). MSC: 35Q35 76F10 35C07 76B25 70K05 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Rev. Roum. Math. Pures Appl. 66, No. 3--4, 725--748 (2021; Zbl 07523917) OpenURL
Khater, Mostafa M. A.; Ahmed, A. El-Sayed Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes. (English) Zbl 1485.35288 AIMS Math. 6, No. 6, 5896-5908 (2021). MSC: 35L51 35C07 76B25 76X05 82D10 PDF BibTeX XML Cite \textit{M. M. A. Khater} and \textit{A. E. S. Ahmed}, AIMS Math. 6, No. 6, 5896--5908 (2021; Zbl 1485.35288) Full Text: DOI OpenURL
Wu, Weixin; Teng, Zhidong The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence. (English) Zbl 07514541 Chaos Solitons Fractals 144, Article ID 110683, 18 p. (2021). MSC: 92-XX 35-XX PDF BibTeX XML Cite \textit{W. Wu} and \textit{Z. Teng}, Chaos Solitons Fractals 144, Article ID 110683, 18 p. (2021; Zbl 07514541) Full Text: DOI OpenURL
Wu, Xin; Ma, Zhaohai Wave propagation in a diffusive SEIR epidemic model with nonlocal transmission and a general nonlinear incidence rate. (English) Zbl 07509931 Bound. Value Probl. 2021, Paper No. 87, 32 p. (2021). MSC: 35C07 35K40 35K57 92D30 PDF BibTeX XML Cite \textit{X. Wu} and \textit{Z. Ma}, Bound. Value Probl. 2021, Paper No. 87, 32 p. (2021; Zbl 07509931) Full Text: DOI OpenURL
Wang, Miaomiao; Qi, Zequn; Chen, Junchao; Li, Biao Resonance Y-shaped soliton and interaction solutions in the \((2+1)\)-dimensional B-type Kadomtsev-Petviashvili equation. (English) Zbl 07502311 Int. J. Mod. Phys. B 35, No. 21, Article ID 2150222, 10 p. (2021). MSC: 35C08 35C05 35C07 35Q51 76B15 PDF BibTeX XML Cite \textit{M. Wang} et al., Int. J. Mod. Phys. B 35, No. 21, Article ID 2150222, 10 p. (2021; Zbl 07502311) Full Text: DOI OpenURL
Arsen’yev, Sergey A.; Eppelbaum, Lev V. Nonlinear model of coastal flooding by a highly turbulent tsunami. (English) Zbl 1482.35109 J. Nonlinear Math. Phys. 28, No. 4, 436-451 (2021). MSC: 35K55 86A05 86A15 76F40 76B15 35C07 35Q86 PDF BibTeX XML Cite \textit{S. A. Arsen'yev} and \textit{L. V. Eppelbaum}, J. Nonlinear Math. Phys. 28, No. 4, 436--451 (2021; Zbl 1482.35109) Full Text: DOI OpenURL
Kazmierczak, Bogdan; Sneyd, James Speed of traveling waves for monotone reaction-diffusion systems as a function of diffusion coefficients. (English) Zbl 1484.35111 Physica D 424, Article ID 132940, 23 p. (2021). MSC: 35C07 35K57 92C37 PDF BibTeX XML Cite \textit{B. Kazmierczak} and \textit{J. Sneyd}, Physica D 424, Article ID 132940, 23 p. (2021; Zbl 1484.35111) Full Text: DOI OpenURL
Johnson, Mathew A.; Perkins, Wesley R. Subharmonic dynamics of wave trains in reaction-diffusion systems. (English) Zbl 07477846 Physica D 422, Article ID 132891, 11 p. (2021). MSC: 37L15 35K57 35C07 PDF BibTeX XML Cite \textit{M. A. Johnson} and \textit{W. R. Perkins}, Physica D 422, Article ID 132891, 11 p. (2021; Zbl 07477846) Full Text: DOI arXiv OpenURL
Esfahani, Amin; Levandosky, Steven Existence and stability of traveling waves of the fifth-order KdV equation. (English) Zbl 07477841 Physica D 421, Article ID 132872, 21 p. (2021). MSC: 35Q53 35C07 35C08 35B35 35A01 35A15 PDF BibTeX XML Cite \textit{A. Esfahani} and \textit{S. Levandosky}, Physica D 421, Article ID 132872, 21 p. (2021; Zbl 07477841) Full Text: DOI OpenURL
Barker, Blake; Monteiro, Rafael; Zumbrun, Kevin Transverse bifurcation of viscous slow MHD shocks. (English) Zbl 07477834 Physica D 420, Article ID 132857, 34 p. (2021). MSC: 76E25 76E17 76W05 76L05 76M99 PDF BibTeX XML Cite \textit{B. Barker} et al., Physica D 420, Article ID 132857, 34 p. (2021; Zbl 07477834) Full Text: DOI arXiv OpenURL
Alejo, Miguel A.; López, José L. Modeling chemotaxis with nonstandard production/degradation mechanisms from Doebner-Goldin theory: existence of solitary waves. (English) Zbl 1484.35119 Physica D 426, Article ID 132989, 6 p. (2021). MSC: 35C08 35C07 35Q55 92C17 PDF BibTeX XML Cite \textit{M. A. Alejo} and \textit{J. L. López}, Physica D 426, Article ID 132989, 6 p. (2021; Zbl 1484.35119) Full Text: DOI OpenURL
Hui, Lam; Joyce, Austin; Landry, Michael J.; Li, Xinyu Vortices and waves in light dark matter. (English) Zbl 07467990 J. Cosmol. Astropart. Phys. 2021, No. 1, Paper No. 11, 54 p. (2021). Reviewer: Alex B. Gaina (Chişinău) MSC: 83C56 83F05 35C07 81V25 83C55 76B47 PDF BibTeX XML Cite \textit{L. Hui} et al., J. Cosmol. Astropart. Phys. 2021, No. 1, Paper No. 11, 54 p. (2021; Zbl 07467990) Full Text: DOI arXiv OpenURL
Akers, Benjamin; Nicholls, David P. Wilton ripples in weakly nonlinear models of water waves: existence and computation. (English) Zbl 07460552 Water Waves 3, No. 3, 491-511 (2021). MSC: 76B15 35Q35 35C07 76B45 76M22 PDF BibTeX XML Cite \textit{B. Akers} and \textit{D. P. Nicholls}, Water Waves 3, No. 3, 491--511 (2021; Zbl 07460552) Full Text: DOI OpenURL
Deng, Dong; Zhang, Dongpei Traveling waves for a discrete diffusive SIR epidemic model with treatment. (English) Zbl 1478.92190 Nonlinear Anal., Real World Appl. 61, Article ID 103325, 30 p. (2021). MSC: 92D30 35C07 35Q92 PDF BibTeX XML Cite \textit{D. Deng} and \textit{D. Zhang}, Nonlinear Anal., Real World Appl. 61, Article ID 103325, 30 p. (2021; Zbl 1478.92190) Full Text: DOI OpenURL
Akers, Benjamin; Nicholls, David P. Wilton ripples in weakly nonlinear dispersive models of water waves: existence and analyticity of solution branches. (English) Zbl 1481.76041 Water Waves 3, No. 1, 25-47 (2021). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{B. Akers} and \textit{D. P. Nicholls}, Water Waves 3, No. 1, 25--47 (2021; Zbl 1481.76041) Full Text: DOI OpenURL
Grunert, Katrin; Reigstad, Audun Traveling waves for the nonlinear variational wave equation. (English) Zbl 1480.35087 SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 61, 21 p. (2021). MSC: 35C07 35L15 35L72 35B60 PDF BibTeX XML Cite \textit{K. Grunert} and \textit{A. Reigstad}, SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 61, 21 p. (2021; Zbl 1480.35087) Full Text: DOI arXiv OpenURL
Lattanzio, Corrado; Zhelyazov, Delyan Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity. (English) Zbl 1480.76167 Math. Models Methods Appl. Sci. 31, No. 9, 1719-1747 (2021). MSC: 76Y05 76E17 76L05 35Q35 PDF BibTeX XML Cite \textit{C. Lattanzio} and \textit{D. Zhelyazov}, Math. Models Methods Appl. Sci. 31, No. 9, 1719--1747 (2021; Zbl 1480.76167) Full Text: DOI arXiv OpenURL
Asenjo, Felipe A.; Hojman, Sergio A. Reply to comment on: “Do electromagnetic waves always propagate along null geodesics?”. (English) Zbl 1483.83027 Classical Quantum Gravity 38, No. 23, Article ID 238002, 3 p. (2021). MSC: 83C50 78A40 83C22 78A05 35C07 PDF BibTeX XML Cite \textit{F. A. Asenjo} and \textit{S. A. Hojman}, Classical Quantum Gravity 38, No. 23, Article ID 238002, 3 p. (2021; Zbl 1483.83027) Full Text: DOI OpenURL
Dalibard, Anne-Laure; Perrin, Charlotte Partially congested propagation fronts in one-dimensional Navier-Stokes equations. (English) Zbl 1479.35658 J. Elliptic Parabol. Equ. 7, No. 2, 491-507 (2021). MSC: 35Q35 35L67 35C07 35B35 76D05 76N10 76L05 35A01 35A02 35R25 PDF BibTeX XML Cite \textit{A.-L. Dalibard} and \textit{C. Perrin}, J. Elliptic Parabol. Equ. 7, No. 2, 491--507 (2021; Zbl 1479.35658) Full Text: DOI arXiv OpenURL
Lou, Yu; Zhang, Yi; Ye, Rusuo Rogue waves on the general periodic traveling wave background for an extended modified Korteweg-de Vries equation. (English) Zbl 1479.35723 Math. Methods Appl. Sci. 44, No. 17, 13711-13722 (2021). MSC: 35Q51 35Q53 35C07 35C08 35B10 37K10 37K35 33E05 PDF BibTeX XML Cite \textit{Y. Lou} et al., Math. Methods Appl. Sci. 44, No. 17, 13711--13722 (2021; Zbl 1479.35723) Full Text: DOI OpenURL
Tian, Baochuan; Wu, Xin Analysis on critical waves for a diffusive epidemic model with saturating incidence rate and infinitely distributed delay. (English) Zbl 1479.35205 Math. Methods Appl. Sci. 44, No. 17, 12921-12930 (2021). MSC: 35C07 35K57 92D30 PDF BibTeX XML Cite \textit{B. Tian} and \textit{X. Wu}, Math. Methods Appl. Sci. 44, No. 17, 12921--12930 (2021; Zbl 1479.35205) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Study on the explicit solutions of the Benney-Luke equation via the variational direct method. (English) Zbl 1484.76018 Math. Methods Appl. Sci. 44, No. 18, 14173-14183 (2021). MSC: 76B25 76M30 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Math. Methods Appl. Sci. 44, No. 18, 14173--14183 (2021; Zbl 1484.76018) Full Text: DOI OpenURL
Hafez, Md. Golam; Iqbal, Sayed Allamah; Asaduzzaman; Hammouch, Zakia Dynamical behaviors and oblique resonant nonlinear waves with dual-power law nonlinearity and conformable temporal evolution. (English) Zbl 1479.35196 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2245-2260 (2021). MSC: 35C07 35Q55 35Q60 74J35 82B23 PDF BibTeX XML Cite \textit{Md. G. Hafez} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2245--2260 (2021; Zbl 1479.35196) Full Text: DOI OpenURL
He, Juan; Zhang, Guo-Bao The minimal speed of traveling wavefronts for a three-component competition system with nonlocal dispersal. (English) Zbl 1479.35199 Int. J. Biomath. 14, No. 7, Article ID 2150058, 12 p. (2021). MSC: 35C07 35B20 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{J. He} and \textit{G.-B. Zhang}, Int. J. Biomath. 14, No. 7, Article ID 2150058, 12 p. (2021; Zbl 1479.35199) Full Text: DOI OpenURL
Stevenson, Noah; Tice, Ian Traveling wave solutions to the multilayer free boundary incompressible Navier-Stokes equations. (English) Zbl 1479.35634 SIAM J. Math. Anal. 53, No. 6, 6370-6423 (2021). MSC: 35Q30 35R35 35C07 35N25 76D33 76D45 PDF BibTeX XML Cite \textit{N. Stevenson} and \textit{I. Tice}, SIAM J. Math. Anal. 53, No. 6, 6370--6423 (2021; Zbl 1479.35634) Full Text: DOI arXiv OpenURL
Sukantamala, Nattakorn; Nanta, Supawan On solitary wave solutions for the Camassa-Holm and the Rosenau-RLW-Kawahara equations with the dual-power law nonlinearities. (English) Zbl 1482.35198 Abstr. Appl. Anal. 2021, Article ID 6649285, 9 p. (2021). MSC: 35Q51 35Q35 76B15 35C07 PDF BibTeX XML Cite \textit{N. Sukantamala} and \textit{S. Nanta}, Abstr. Appl. Anal. 2021, Article ID 6649285, 9 p. (2021; Zbl 1482.35198) Full Text: DOI OpenURL
Modhara, Sunil; Lai, Yi Ming; Thul, Rüdiger; Coombes, Stephen Neural fields with rebound currents: novel routes to patterning. (English) Zbl 1475.92018 SIAM J. Appl. Dyn. Syst. 20, No. 3, 1596-1620 (2021). MSC: 92B20 92C15 35C07 PDF BibTeX XML Cite \textit{S. Modhara} et al., SIAM J. Appl. Dyn. Syst. 20, No. 3, 1596--1620 (2021; Zbl 1475.92018) Full Text: DOI OpenURL
Creedon, Ryan; Deconinck, Bernard; Trichtchenko, Olga High-frequency instabilities of the Kawahara equation: a perturbative approach. (English) Zbl 1478.35072 SIAM J. Appl. Dyn. Syst. 20, No. 3, 1571-1595 (2021). MSC: 35C07 35B35 35G25 37K45 34L05 PDF BibTeX XML Cite \textit{R. Creedon} et al., SIAM J. Appl. Dyn. Syst. 20, No. 3, 1571--1595 (2021; Zbl 1478.35072) Full Text: DOI arXiv OpenURL
Baskonus, Haci Mehmet; García Guirao, Juan Luis; Kumar, Ajay; Vidal Causanilles, Fernando S.; Bermudez, German Rodriguez Regarding new traveling wave solutions for the mathematical model arising in telecommunications. (English) Zbl 1478.78055 Adv. Math. Phys. 2021, Article ID 5554280, 11 p. (2021). MSC: 78A60 78A40 35C08 35C07 35C09 35Q60 PDF BibTeX XML Cite \textit{H. M. Baskonus} et al., Adv. Math. Phys. 2021, Article ID 5554280, 11 p. (2021; Zbl 1478.78055) Full Text: DOI OpenURL
Mieling, Thomas B. The response of laser interferometric gravitational wave detectors beyond the eikonal equation. (English) Zbl 1482.83033 Classical Quantum Gravity 38, No. 17, Article ID 175007, 34 p. (2021). MSC: 83C35 78A60 78A05 35C07 PDF BibTeX XML Cite \textit{T. B. Mieling}, Classical Quantum Gravity 38, No. 17, Article ID 175007, 34 p. (2021; Zbl 1482.83033) Full Text: DOI arXiv OpenURL
Xu, Guoan; Zhang, Yi On the existence of solitary wave solutions for perturbed Degasperis-Procesi equation. (English) Zbl 07421282 Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 80, 10 p. (2021). Reviewer: Yong Ye (Shenzhen) MSC: 34C05 34C37 34E15 34C23 35C07 76B15 34E10 PDF BibTeX XML Cite \textit{G. Xu} and \textit{Y. Zhang}, Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 80, 10 p. (2021; Zbl 07421282) Full Text: DOI OpenURL
Dedè, Luca; Quarteroni, Alfio; Regazzoni, Francesco Mathematical and numerical models for the cardiac electromechanical function. (English) Zbl 1478.35211 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 2, 233-272 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 65M60 65L06 65N30 92C10 92C35 92C37 92C40 92C20 35A24 35C07 76D05 76Z05 78A57 78A40 PDF BibTeX XML Cite \textit{L. Dedè} et al., Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 2, 233--272 (2021; Zbl 1478.35211) Full Text: DOI OpenURL
Gui, Guilong; Liu, Yue; Luo, Wei; Yin, Zhaoyang On a two dimensional nonlocal shallow-water model. (English) Zbl 1477.35162 Adv. Math. 392, Article ID 108021, 44 p. (2021). MSC: 35Q35 76B15 76B25 35G25 35B44 35B40 35B53 35C07 35C08 35A01 35A02 35D35 PDF BibTeX XML Cite \textit{G. Gui} et al., Adv. Math. 392, Article ID 108021, 44 p. (2021; Zbl 1477.35162) Full Text: DOI OpenURL
Abi Younes, G.; El Khatib, N. Mathematical modeling of atherogenesis: atheroprotective role of HDL. (English) Zbl 1472.92078 J. Theor. Biol. 529, Article ID 110855, 16 p. (2021). MSC: 92C32 35K57 35C07 PDF BibTeX XML Cite \textit{G. Abi Younes} and \textit{N. El Khatib}, J. Theor. Biol. 529, Article ID 110855, 16 p. (2021; Zbl 1472.92078) Full Text: DOI OpenURL
Drábek, Pavel; Takáč, Peter Travelling waves in the Fisher-KPP equation with nonlinear degenerate or singular diffusion. (English) Zbl 1479.35880 Appl. Math. Optim. 84, No. 2, 1185-1208 (2021). MSC: 35Q92 92D25 34B08 35K57 35K65 34B18 35C07 PDF BibTeX XML Cite \textit{P. Drábek} and \textit{P. Takáč}, Appl. Math. Optim. 84, No. 2, 1185--1208 (2021; Zbl 1479.35880) Full Text: DOI arXiv OpenURL
Clarke, W. A.; Marangell, R. Rigorous justification of the Whitham modulation theory for equations of NLS type. (English) Zbl 07405475 Stud. Appl. Math. 147, No. 2, 577-621 (2021). MSC: 35Q55 35Q53 35B10 35C07 35C20 81Q20 PDF BibTeX XML Cite \textit{W. A. Clarke} and \textit{R. Marangell}, Stud. Appl. Math. 147, No. 2, 577--621 (2021; Zbl 07405475) Full Text: DOI arXiv OpenURL
Constantin, Adrian; Strauss, Walter; Vărvărucă, Eugen Large-amplitude steady downstream water waves. (English) Zbl 1480.76014 Commun. Math. Phys. 387, No. 1, 237-266 (2021). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{A. Constantin} et al., Commun. Math. Phys. 387, No. 1, 237--266 (2021; Zbl 1480.76014) Full Text: DOI arXiv OpenURL
Liu, Hong-Zhun Thirty traveling wave solutions to the systems of ion sound and Langmuir waves. (English) Zbl 1473.35093 Japan J. Ind. Appl. Math. 38, No. 3, 877-902 (2021). MSC: 35C07 35Q51 33E05 PDF BibTeX XML Cite \textit{H.-Z. Liu}, Japan J. Ind. Appl. Math. 38, No. 3, 877--902 (2021; Zbl 1473.35093) Full Text: DOI OpenURL
Yan, Yu; Wu, Shiliang Uniqueness and stability of traveling wave fronts for nonlocal diffusion systems in periodic habitat. (Chinese. English summary) Zbl 07404108 J. Northwest Norm. Univ., Nat. Sci. 57, No. 3, 13-21 (2021). MSC: 35B35 35C07 35K57 PDF BibTeX XML Cite \textit{Y. Yan} and \textit{S. Wu}, J. Northwest Norm. Univ., Nat. Sci. 57, No. 3, 13--21 (2021; Zbl 07404108) Full Text: DOI OpenURL
Bouin, Emeric; Henderson, Christopher The Bramson delay in a Fisher-KPP equation with log-singular nonlinearity. (English) Zbl 1473.35090 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112508, 30 p. (2021). MSC: 35C07 35B40 35K57 35Q92 45K05 PDF BibTeX XML Cite \textit{E. Bouin} and \textit{C. Henderson}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 213, Article ID 112508, 30 p. (2021; Zbl 1473.35090) Full Text: DOI arXiv OpenURL
Huang, Wenzhang; Wu, Chufen Non-monotone waves of a stage-structured SLIRM epidemic model with latent period. (English) Zbl 1479.35884 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1407-1442 (2021). MSC: 35Q92 35K57 35C07 35B40 44A10 30E20 92D30 PDF BibTeX XML Cite \textit{W. Huang} and \textit{C. Wu}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1407--1442 (2021; Zbl 1479.35884) Full Text: DOI OpenURL
Ruiz, David; Horta Muñoz, Sergio Optimal design of electrode polarization in piezoelectric unimorph beams to induce traveling waves. (English) Zbl 1481.74624 Appl. Math. Modelling 99, 1-13 (2021). MSC: 74P15 74F15 74K10 78A55 90C90 PDF BibTeX XML Cite \textit{D. Ruiz} and \textit{S. Horta Muñoz}, Appl. Math. Modelling 99, 1--13 (2021; Zbl 1481.74624) Full Text: DOI OpenURL
Papanicolaou, George; Ryzhik, Lenya; Velcheva, Katerina Traveling waves in a mean field learning model. (English) Zbl 1469.91033 Nonlinearity 34, No. 10, 6799-6842 (2021). MSC: 91B62 91A16 35C07 35Q91 PDF BibTeX XML Cite \textit{G. Papanicolaou} et al., Nonlinearity 34, No. 10, 6799--6842 (2021; Zbl 1469.91033) Full Text: DOI arXiv OpenURL
Figotin, Alexander Exceptional points of degeneracy in traveling wave tubes. (English) Zbl 1476.78012 J. Math. Phys. 62, No. 8, 082701, 24 p. (2021). MSC: 78A55 78A35 78A40 35C07 15A18 PDF BibTeX XML Cite \textit{A. Figotin}, J. Math. Phys. 62, No. 8, 082701, 24 p. (2021; Zbl 1476.78012) Full Text: DOI arXiv OpenURL
Wang, Tingting; Yang, Shaojie; Han, Xuanxuan Symmetric waves are traveling waves for the rotation-Camassa-Holm equation. (English) Zbl 1471.76017 J. Math. Fluid Mech. 23, No. 3, Paper No. 84, 4 p. (2021). MSC: 76B15 76U60 86A05 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Math. Fluid Mech. 23, No. 3, Paper No. 84, 4 p. (2021; Zbl 1471.76017) Full Text: DOI OpenURL
Zhang, Yuxiang; Zhao, Xiao-Qiang Uniqueness and stability of bistable waves for monotone semiflows. (English) Zbl 1484.37035 Proc. Am. Math. Soc. 149, No. 10, 4287-4302 (2021). Reviewer: David Cheban (Chişinău) MSC: 37C65 35C07 35K57 35B40 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{X.-Q. Zhao}, Proc. Am. Math. Soc. 149, No. 10, 4287--4302 (2021; Zbl 1484.37035) Full Text: DOI OpenURL
Ji, Shanming; Wang, Zhi-An; Xu, Tianyuan; Yin, Jingxue A reducing mechanism on wave speed for chemotaxis systems with degenerate diffusion. (English) Zbl 1471.35078 Calc. Var. Partial Differ. Equ. 60, No. 5, Paper No. 178, 19 p. (2021). MSC: 35C07 35K40 35K65 35K57 92C17 PDF BibTeX XML Cite \textit{S. Ji} et al., Calc. Var. Partial Differ. Equ. 60, No. 5, Paper No. 178, 19 p. (2021; Zbl 1471.35078) Full Text: DOI arXiv OpenURL
Bahri, Yakine; Ibrahim, Slim; Kikuchi, Hiroaki Transverse stability of line soliton and characterization of ground state for wave guide Schrödinger equations. (English) Zbl 1471.76018 J. Dyn. Differ. Equations 33, No. 3, 1297-1339 (2021). MSC: 76B25 76E30 35Q51 35Q55 PDF BibTeX XML Cite \textit{Y. Bahri} et al., J. Dyn. Differ. Equations 33, No. 3, 1297--1339 (2021; Zbl 1471.76018) Full Text: DOI arXiv OpenURL
Liu, Ting; Zhang, Guo-Bao Global stability of traveling waves for a spatially discrete diffusion system with time delay. (English) Zbl 1472.39010 Electron Res. Arch. 29, No. 4, 2599-2618 (2021). MSC: 39A12 39A30 37L60 37L15 35K57 35B35 92D25 92D30 PDF BibTeX XML Cite \textit{T. Liu} and \textit{G.-B. Zhang}, Electron Res. Arch. 29, No. 4, 2599--2618 (2021; Zbl 1472.39010) Full Text: DOI OpenURL
Basu, Biswajit; Martin, Calin I. An alternative approach to study irrotational periodic gravity water waves. (English) Zbl 1470.35266 Z. Angew. Math. Phys. 72, No. 4, Paper No. 155, 15 p. (2021). MSC: 35Q31 35Q35 76B15 35B32 35C07 35A01 35R35 PDF BibTeX XML Cite \textit{B. Basu} and \textit{C. I. Martin}, Z. Angew. Math. Phys. 72, No. 4, Paper No. 155, 15 p. (2021; Zbl 1470.35266) Full Text: DOI OpenURL
Gonzalez Herrero, Maria Elena; Kuehn, Christian; Tsaneva-Atanasova, Krasimira Reduced models of cardiomyocytes excitability: comparing Karma and FitzHugh-Nagumo. (English) Zbl 1468.92029 Bull. Math. Biol. 83, No. 8, Paper No. 88, 37 p. (2021). MSC: 92C37 35C07 35B25 PDF BibTeX XML Cite \textit{M. E. Gonzalez Herrero} et al., Bull. Math. Biol. 83, No. 8, Paper No. 88, 37 p. (2021; Zbl 1468.92029) Full Text: DOI arXiv OpenURL
Liu, Fei Justina; Tsai, Tai-Peng; Zwiers, Ian Existence and stability of standing waves for one dimensional NLS with triple power nonlinearities. (English) Zbl 07379233 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112409, 34 p. (2021). MSC: 35C07 34B40 35Q55 PDF BibTeX XML Cite \textit{F. J. Liu} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112409, 34 p. (2021; Zbl 07379233) Full Text: DOI arXiv OpenURL
Lou, Yijun; Zhang, Yuxiang Spatio-temporal dynamics of a model for the effect of variable ages at reproduction. (English) Zbl 1475.35358 Nonlinearity 34, No. 9, 5897-5925 (2021). MSC: 35Q92 35B40 35C07 35K57 37N25 92D25 92D40 35R07 PDF BibTeX XML Cite \textit{Y. Lou} and \textit{Y. Zhang}, Nonlinearity 34, No. 9, 5897--5925 (2021; Zbl 1475.35358) Full Text: DOI OpenURL
Hakkaev, Sevdzhan; Stefanov, Atanas G. Stability of periodic waves for the fractional KdV and NLS equations. (English) Zbl 1475.35320 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 4, 1171-1203 (2021). MSC: 35Q55 35Q53 35P10 35B35 35B09 35C07 35A01 35A02 49M41 26A33 35R11 PDF BibTeX XML Cite \textit{S. Hakkaev} and \textit{A. G. Stefanov}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 4, 1171--1203 (2021; Zbl 1475.35320) Full Text: DOI arXiv OpenURL
Hasan, Cris R.; Osinga, Hinke M.; Postlethwaite, Claire M.; Rucklidge, Alastair M. Spatiotemporal stability of periodic travelling waves in a heteroclinic-cycle model. (English) Zbl 1475.37085 Nonlinearity 34, No. 8, 5576-5598 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 37L15 35C07 35B06 35B35 37M20 35Q91 PDF BibTeX XML Cite \textit{C. R. Hasan} et al., Nonlinearity 34, No. 8, 5576--5598 (2021; Zbl 1475.37085) Full Text: DOI arXiv OpenURL