Ninomiya, Hirokazu Entire solutions of the Allen-Cahn-Nagumo equation in a multi-dimensional space. (English) Zbl 07314169 Discrete Contin. Dyn. Syst. 41, No. 1, 395-412 (2021). MSC: 35K57 35C07 35B40 35B06 PDF BibTeX XML Cite \textit{H. Ninomiya}, Discrete Contin. Dyn. Syst. 41, No. 1, 395--412 (2021; Zbl 07314169) Full Text: DOI
Wei, Jingdong; Zhou, Jiangbo; Zhen, Zaili; Tian, Lixin Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model. (English) Zbl 07308678 Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021). MSC: 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Wei} et al., Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021; Zbl 07308678) Full Text: DOI
Leta, Temesgen Desta; Liu, Wenjun; Ding, Jian Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications. (English) Zbl 07302481 Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021). MSC: 34A05 34C23 34C37 34C25 35C07 35R11 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021; Zbl 07302481) Full Text: DOI
Zheng, Xiaoxiao; Xiao, Qizhen; Ouyang, Zigen A smooth soliton solution and a periodic cuspon solution of the Novikov equation. (English) Zbl 1453.35042 Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021). MSC: 35C07 35C08 35B10 35G25 35B32 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021; Zbl 1453.35042) Full Text: DOI
Du, Zengji; Liu, Jiang; Ren, Yulin Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach. (English) Zbl 1452.35219 J. Differ. Equations 270, 1019-1042 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 92C17 35C07 34D15 35B25 PDF BibTeX XML Cite \textit{Z. Du} et al., J. Differ. Equations 270, 1019--1042 (2021; Zbl 1452.35219) Full Text: DOI
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Meng, Qing; He, Bin Bifurcation analysis and exact traveling wave solutions for a generic two-dimensional sine-Gordon equation in nonlinear optics. (English) Zbl 07315418 J. Appl. Anal. Comput. 10, No. 4, 1443-1463 (2020). MSC: 34C25 34F10 35C07 35C08 PDF BibTeX XML Cite \textit{Q. Meng} and \textit{B. He}, J. Appl. Anal. Comput. 10, No. 4, 1443--1463 (2020; Zbl 07315418) Full Text: DOI
Zhuang, Jinsen; Zhou, Yan Bifurcations and exact traveling wave solutions of the equivalent complex short-pulse equations. (English) Zbl 07315123 J. Appl. Anal. Comput. 10, No. 2, 795-815 (2020). MSC: 35Q53 35B32 35Q51 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{J. Zhuang} and \textit{Y. Zhou}, J. Appl. Anal. Comput. 10, No. 2, 795--815 (2020; Zbl 07315123) Full Text: DOI
Alharbi, Abdulghani R.; Almatrafi, M. B.; Seadawy, Aly R. Construction of the numerical and analytical wave solutions of the Joseph-Egri dynamical equation for the long waves in nonlinear dispersive systems. (English) Zbl 07312218 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050289, 10 p. (2020). MSC: 35Q53 35A25 35C08 35C07 PDF BibTeX XML Cite \textit{A. R. Alharbi} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050289, 10 p. (2020; Zbl 07312218) Full Text: DOI
Yokuş, Asıf; Kaya, Doğan Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics. (English) Zbl 07312210 Int. J. Mod. Phys. B 34, No. 29, Article ID 2050282, 22 p. (2020). MSC: 35Q53 35A22 35C07 65M06 PDF BibTeX XML Cite \textit{A. Yokuş} and \textit{D. Kaya}, Int. J. Mod. Phys. B 34, No. 29, Article ID 2050282, 22 p. (2020; Zbl 07312210) Full Text: DOI
Halder, Amlan K.; Leach, P. G. L.; Paliathanasis, A.; Sinuvasan, R. Cheng equation: a revisit through symmetry analysis. (English) Zbl 07311167 Quaest. Math. 43, No. 7, 857-867 (2020). MSC: 35 34A05 34A34 34C14 22E60 35B06 35C05 35C07 PDF BibTeX XML Cite \textit{A. K. Halder} et al., Quaest. Math. 43, No. 7, 857--867 (2020; Zbl 07311167) Full Text: DOI
Zhou, Kai; Yang, Jun; Ma, Liyuan; Shen, Shoufeng Symbolic computation of new exact solutions for some nonlinear equations in mathematical physics. (Chinese. English summary) Zbl 07295001 Appl. Math., Ser. A (Chin. Ed.) 35, No. 2, 223-234 (2020). MSC: 68W30 35Q51 35Q53 35C07 35C08 PDF BibTeX XML Cite \textit{K. Zhou} et al., Appl. Math., Ser. A (Chin. Ed.) 35, No. 2, 223--234 (2020; Zbl 07295001) Full Text: DOI
Rakhmelevich, Igor’ Vladimirovich On multidimensional determinant differential-operator equations. (Russian. English summary) Zbl 07293481 Vladikavkaz. Mat. Zh. 22, No. 2, 53-69 (2020). MSC: 35G20 PDF BibTeX XML Cite \textit{I. V. Rakhmelevich}, Vladikavkaz. Mat. Zh. 22, No. 2, 53--69 (2020; Zbl 07293481) Full Text: DOI MNR
Fei, Jin-Xi; Cao, Wei-Ping; Ma, Zheng-Yi Dark parameterization approach to the Benjamin-Ono equation. (English) Zbl 1451.35161 Int. J. Mod. Phys. B 34, No. 27, Article ID 2050247, 8 p. (2020). MSC: 35Q53 35C07 35A25 PDF BibTeX XML Cite \textit{J.-X. Fei} et al., Int. J. Mod. Phys. B 34, No. 27, Article ID 2050247, 8 p. (2020; Zbl 1451.35161) Full Text: DOI
Anco, Stephen C.; Gandarias, M. L. Symmetry multi-reduction method for partial differential equations with conservation laws. (English) Zbl 1453.35009 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105349, 16 p. (2020). MSC: 35B06 35C07 PDF BibTeX XML Cite \textit{S. C. Anco} and \textit{M. L. Gandarias}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105349, 16 p. (2020; Zbl 1453.35009) Full Text: DOI
Lu, Peng-Hong; Wang, Ben-Hai; Dai, Chao-Qing Fractional traveling wave solutions of the \((2+1)\)-dimensional fractional complex Ginzburg-Landau equation via two methods. (English) Zbl 1453.35041 Math. Methods Appl. Sci. 43, No. 15, 8518-8526 (2020). MSC: 35C07 35C05 35Q56 35R11 PDF BibTeX XML Cite \textit{P.-H. Lu} et al., Math. Methods Appl. Sci. 43, No. 15, 8518--8526 (2020; Zbl 1453.35041) Full Text: DOI
Wang, Xuecheng Global regularity for the 3D finite depth capillary water waves. (English) Zbl 1451.35142 Ann. Sci. Éc. Norm. Supér. (4) 53, No. 4, 847-943 (2020). MSC: 35Q35 76B15 76B45 35B65 35A01 35C07 PDF BibTeX XML Cite \textit{X. Wang}, Ann. Sci. Éc. Norm. Supér. (4) 53, No. 4, 847--943 (2020; Zbl 1451.35142) Full Text: DOI
Ichida, Yu; Sakamoto, Takashi Okuda Traveling wave solutions for degenerate nonlinear parabolic equations. (English) Zbl 1451.35045 J. Elliptic Parabol. Equ. 6, No. 2, 795-832 (2020); correction ibid. 6, No. 2, 833 (2020). MSC: 35C07 35K65 35B40 34C05 34C08 PDF BibTeX XML Cite \textit{Y. Ichida} and \textit{T. O. Sakamoto}, J. Elliptic Parabol. Equ. 6, No. 2, 795--832 (2020; Zbl 1451.35045) Full Text: DOI
Zhao, Min; Qu, Changzheng The two-component \(\mu\)-Novikov-type systems with periodic peaked solutions and \({H^1}\)-conservation law. (Chinese. English summary) Zbl 07267497 Pure Appl. Math. 36, No. 1, 1-15 (2020). MSC: 35Q53 37K05 PDF BibTeX XML Cite \textit{M. Zhao} and \textit{C. Qu}, Pure Appl. Math. 36, No. 1, 1--15 (2020; Zbl 07267497) Full Text: DOI
He, Chunlei; Huang, Shoujun; Xia, Chunping; Xu, Yangyang New exact solutions to the nonlinear Zoomeron equation with local conformable time-fractional derivative. (English) Zbl 07266891 J. Math. Res. Appl. 40, No. 3, 287-296 (2020). MSC: 35Q53 35R11 35C07 PDF BibTeX XML Cite \textit{C. He} et al., J. Math. Res. Appl. 40, No. 3, 287--296 (2020; Zbl 07266891) Full Text: DOI
Sirendaoerji Generalization of the variable separated equation method and its applications. (Chinese. English summary) Zbl 07266830 J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 1, 1-8 (2020). MSC: 35A25 35C07 PDF BibTeX XML Cite \textit{Sirendaoerji}, J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 1, 1--8 (2020; Zbl 07266830) Full Text: DOI
Mitra, K.; Köppl, T.; Pop, I. S.; van Duijn, C. J.; Helmig, R. Fronts in two-phase porous media flow problems: the effects of hysteresis and dynamic capillarity. (English) Zbl 07265662 Stud. Appl. Math. 144, No. 4, 449-492 (2020). MSC: 76S05 76T30 76L05 PDF BibTeX XML Cite \textit{K. Mitra} et al., Stud. Appl. Math. 144, No. 4, 449--492 (2020; Zbl 07265662) Full Text: DOI
Li, Kun Invasion waves in a higher-dimensional lattice competitive system with stage structure. (English) Zbl 1452.37076 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3711-3723 (2020). MSC: 37L60 35C07 PDF BibTeX XML Cite \textit{K. Li}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3711--3723 (2020; Zbl 1452.37076) Full Text: DOI
Li, Jibin; Chen, Guanrong; Song, Jie Bifurcations and dynamics of traveling wave solutions for the regularized Saint-Venant equation. (English) Zbl 1445.35037 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 7, Article ID 2050109, 19 p. (2020). MSC: 35B32 35C07 35C08 35Q35 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 7, Article ID 2050109, 19 p. (2020; Zbl 1445.35037) Full Text: DOI
Seadawy, Aly R.; Alamri, Sultan Z.; Al-Sharari, Haya M. Construction of optical soliton solutions of the generalized nonlinear Radhakrishnan-Kundu-Lakshmanan dynamical equation with power law nonlinearity. (English) Zbl 1439.35445 Int. J. Mod. Phys. B 34, No. 13, Article ID 2050139, 17 p. (2020). MSC: 35Q55 78A60 35C07 35C08 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Int. J. Mod. Phys. B 34, No. 13, Article ID 2050139, 17 p. (2020; Zbl 1439.35445) Full Text: DOI
Lin, Fubiao; Zhang, Qianhong A new application of the extended tanh-function method and new solutions of the Riccati equation and sine-Gordon equation. (Chinese. English summary) Zbl 1449.35009 Chin. J. Eng. Math. 37, No. 1, 56-66 (2020). MSC: 35A20 35C07 35Q53 PDF BibTeX XML Cite \textit{F. Lin} and \textit{Q. Zhang}, Chin. J. Eng. Math. 37, No. 1, 56--66 (2020; Zbl 1449.35009) Full Text: DOI
Shahasavari, Zahra; Allahviranloo, Tofigh; Abbasbandy, Saeid; Rostamy-Malkhalifeh, Mohsen The traveling wave solution of the fuzzy linear partial differential equation. (English) Zbl 1439.35552 Appl. Appl. Math. 15, No. 1, 408-429 (2020). MSC: 35R13 35F10 PDF BibTeX XML Cite \textit{Z. Shahasavari} et al., Appl. Appl. Math. 15, No. 1, 408--429 (2020; Zbl 1439.35552) Full Text: Link
Jamil, Muhammad; Ahmed, Arsalan; Khan, Najeeb Alam Some exact traveling wave solutions of MHD Maxwell fluid in porous medium. (English) Zbl 1435.76005 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 69, 18 p. (2020). MSC: 76A05 76A10 35C07 35Q35 PDF BibTeX XML Cite \textit{M. Jamil} et al., Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 69, 18 p. (2020; Zbl 1435.76005) Full Text: DOI
Abdel Latif, M. S.; Abdel Kader, A. H. A note on the \(\exp (-\varphi (z))\) expansion method. (English) Zbl 1441.35089 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 56, 7 p. (2020). MSC: 35C07 35C05 PDF BibTeX XML Cite \textit{M. S. Abdel Latif} and \textit{A. H. Abdel Kader}, Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 56, 7 p. (2020; Zbl 1441.35089) Full Text: DOI
Han, Bang-Sheng; Wang, Zhi-Cheng; Du, Zengji Traveling waves for nonlocal Lotka-Volterra competition systems. (English) Zbl 1437.35141 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1959-1983 (2020). MSC: 35C07 35K45 35K57 35R09 PDF BibTeX XML Cite \textit{B.-S. Han} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1959--1983 (2020; Zbl 1437.35141) Full Text: DOI
Zhang, Tianran Traveling waves for a reaction-diffusion model with a cyclic structure. (English) Zbl 1442.35215 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1859-1870 (2020). MSC: 35K57 35C07 92B05 PDF BibTeX XML Cite \textit{T. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1859--1870 (2020; Zbl 1442.35215) Full Text: DOI
Yue, Yuanxi; Han, Yazhou; Tao, Jicheng; Ma, Manjun The minimal wave speed to the Lotka-Volterra competition model. (English) Zbl 1436.35064 J. Math. Anal. Appl. 488, No. 2, Article ID 124106, 11 p. (2020). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Yue} et al., J. Math. Anal. Appl. 488, No. 2, Article ID 124106, 11 p. (2020; Zbl 1436.35064) Full Text: DOI
Guo, Jong-Shenq; Nakamura, Ken-Ichi; Ogiwara, Toshiko; Wu, Chin-Chin Traveling wave solutions for a predator-prey system with two predators and one prey. (English) Zbl 1437.34052 Nonlinear Anal., Real World Appl. 54, Article ID 103111, 13 p. (2020). MSC: 34C37 34B40 35Q92 35C07 47N20 92D25 PDF BibTeX XML Cite \textit{J.-S. Guo} et al., Nonlinear Anal., Real World Appl. 54, Article ID 103111, 13 p. (2020; Zbl 1437.34052) Full Text: DOI
Li, Jibin; Chen, Guanrong; Song, Jie Completing the study of traveling wave solutions for three two-component shallow water wave models. (English) Zbl 1444.34004 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050036, 22 p. (2020). MSC: 34A05 34C23 34C05 34C25 34C37 35C07 35Q53 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050036, 22 p. (2020; Zbl 1444.34004) Full Text: DOI
Ei, Shin-Ichiro; Guo, Jong-Shenq; Ishii, Hiroshi; Wu, Chin-Chin Existence of traveling wave solutions to a nonlocal scalar equation with sign-changing kernel. (English) Zbl 1441.34075 J. Math. Anal. Appl. 487, No. 2, Article ID 124007, 14 p. (2020). Reviewer: George Karakostas (Ioannina) MSC: 34K10 34K25 35C07 35R09 47N20 PDF BibTeX XML Cite \textit{S.-I. Ei} et al., J. Math. Anal. Appl. 487, No. 2, Article ID 124007, 14 p. (2020; Zbl 1441.34075) Full Text: DOI
Bertsch, Michiel; Hilhorst, Danielle; Izuhara, Hirofumi; Mimura, Masayasu; Wakasa, Tohru A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic Fisher-KPP equation. (English) Zbl 1435.35126 Discrete Contin. Dyn. Syst. 40, No. 6, 3117-3142 (2020). MSC: 35G55 35A01 35K57 35C07 35K65 92D25 PDF BibTeX XML Cite \textit{M. Bertsch} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3117--3142 (2020; Zbl 1435.35126) Full Text: DOI
Liang, Jianli; Tang, Longkun; Xia, Yonghui; Zhang, Yi Bifurcations and exact solutions for a class of MKdV equations with the conformable fractional derivative via dynamical system method. (English) Zbl 1436.34034 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050004, 11 p. (2020). MSC: 34C23 34A05 34C37 34C05 35Q53 35R11 35C07 34A08 PDF BibTeX XML Cite \textit{J. Liang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050004, 11 p. (2020; Zbl 1436.34034) Full Text: DOI
Chang, Lina; Liu, Hanze; Zhang, Lijun Symmetry reductions, dynamical behavior and exact explicit solutions to a class of nonlinear shallow water wave equation. (English) Zbl 1437.37101 Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 35, 14 p. (2020). Reviewer: Stefano Biagi (Milano) MSC: 37L20 37K06 35Q35 35C07 35L05 35B06 PDF BibTeX XML Cite \textit{L. Chang} et al., Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 35, 14 p. (2020; Zbl 1437.37101) Full Text: DOI
Zhang, Bei; Zhu, Wenjing; Xia, Yonghui; Bai, Yuzhen A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: via bifurcation theory of dynamical system. (English) Zbl 1450.34008 Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 11, 28 p. (2020). MSC: 34A05 34C23 34C05 34C37 35C07 35R11 PDF BibTeX XML Cite \textit{B. Zhang} et al., Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 11, 28 p. (2020; Zbl 1450.34008) Full Text: DOI
Chladná, Zuzana; Hasík, Karel; Kopfová, Jana; Nábělková, Petra; Trofimchuk, Sergei Nonlinearly determined wavefronts of the Nicholson’s diffusive equation: when small delays are not harmless. (English) Zbl 1443.34073 J. Differ. Equations 268, No. 9, 5156-5178 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34K16 34K12 35C07 35K57 35R10 92D25 PDF BibTeX XML Cite \textit{Z. Chladná} et al., J. Differ. Equations 268, No. 9, 5156--5178 (2020; Zbl 1443.34073) Full Text: DOI
Yang, Hui Non-uniform continuity of the solution map to the rotation-two-component Camassa-Holm system. (English) Zbl 1432.35020 J. Differ. Equations 268, No. 8, 4423-4463 (2020). MSC: 35B30 35G25 35Q53 35C07 35Q35 PDF BibTeX XML Cite \textit{H. Yang}, J. Differ. Equations 268, No. 8, 4423--4463 (2020; Zbl 1432.35020) Full Text: DOI
Houwe, Alphonse; Justin, Mibaile; Doka, Serge Y.; Crépin, Kofané Timoléon New traveling wave solutions of the perturbed nonlinear Schrödingers equation in the left-handed metamaterials. (English) Zbl 1432.35042 Asian-Eur. J. Math. 13, No. 1, Article ID 2050022, 8 p. (2020). MSC: 35C07 35Q55 35C08 PDF BibTeX XML Cite \textit{A. Houwe} et al., Asian-Eur. J. Math. 13, No. 1, Article ID 2050022, 8 p. (2020; Zbl 1432.35042) Full Text: DOI
Alharbi, A. R.; Almatrafi, M. B. Riccati-Bernoulli sub-ODE approach on the partial differential equations and applications. (English) Zbl 1430.35007 Int. J. Math. Comput. Sci. 15, No. 1, 367-388 (2020). MSC: 35A24 35A20 83C15 65L12 65L50 65M50 65N06 65N50 35Q51 65Z05 76A20 35C08 35C07 PDF BibTeX XML Cite \textit{A. R. Alharbi} and \textit{M. B. Almatrafi}, Int. J. Math. Comput. Sci. 15, No. 1, 367--388 (2020; Zbl 1430.35007) Full Text: Link
Yang, Yu; Zou, Lan; Zhou, Jinling; Hsu, Cheng-Hsiung Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate. (English) Zbl 1431.35215 Nonlinear Anal., Real World Appl. 53, Article ID 103065, 22 p. (2020). MSC: 35Q92 92C60 35B40 35B35 35C07 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Yang} et al., Nonlinear Anal., Real World Appl. 53, Article ID 103065, 22 p. (2020; Zbl 1431.35215) Full Text: DOI
Bao, Xiongxiong; Li, Wan-Tong Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats. (English) Zbl 1430.92122 Nonlinear Anal., Real World Appl. 51, Article ID 102975, 26 p. (2020). MSC: 92D40 92D30 35Q92 35C07 35B10 PDF BibTeX XML Cite \textit{X. Bao} and \textit{W.-T. Li}, Nonlinear Anal., Real World Appl. 51, Article ID 102975, 26 p. (2020; Zbl 1430.92122) Full Text: DOI
Kudryashov, Nikolay A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. (English) Zbl 1433.35367 Appl. Math. Comput. 371, Article ID 124972, 11 p. (2020). MSC: 35Q55 35C08 78A60 35Q53 35C05 35C07 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Appl. Math. Comput. 371, Article ID 124972, 11 p. (2020; Zbl 1433.35367) Full Text: DOI
Hernández, Eduardo; Trofimchuk, Sergei Traveling waves solutions for partial neutral differential equations. (English) Zbl 1426.35064 J. Math. Anal. Appl. 481, No. 1, Article ID 123458, 14 p. (2020). MSC: 35C07 35R10 35K58 35K90 PDF BibTeX XML Cite \textit{E. Hernández} and \textit{S. Trofimchuk}, J. Math. Anal. Appl. 481, No. 1, Article ID 123458, 14 p. (2020; Zbl 1426.35064) Full Text: DOI
Gao, Yu; Li, Lei; Liu, Jian-Guo Patched peakon weak solutions of the modified Camassa-Holm equation. (English) Zbl 1448.37087 Physica D 390, 15-35 (2019). MSC: 37K40 35C07 35C08 35D30 PDF BibTeX XML Cite \textit{Y. Gao} et al., Physica D 390, 15--35 (2019; Zbl 1448.37087) Full Text: DOI
Chugainova, A. P.; Shargatov, V. A. Analytical description of the structure of special discontinuities described by a generalized KdV-Burgers equation. (English) Zbl 07263858 Commun. Nonlinear Sci. Numer. Simul. 66, 129-146 (2019). MSC: 76L05 35Q53 PDF BibTeX XML Cite \textit{A. P. Chugainova} and \textit{V. A. Shargatov}, Commun. Nonlinear Sci. Numer. Simul. 66, 129--146 (2019; Zbl 07263858) Full Text: DOI
Fan, Feiting; Zhou, Yuqian; Liu, Qian Bifurcation of traveling wave solutions for the Joseph-Egri equation. (English) Zbl 1441.35090 Rep. Math. Phys. 83, No. 2, 175-190 (2019). MSC: 35C07 35B32 PDF BibTeX XML Cite \textit{F. Fan} et al., Rep. Math. Phys. 83, No. 2, 175--190 (2019; Zbl 1441.35090) Full Text: DOI
Lin, Fubiao; Zhang, Qianhong Solving explicit new traveling wave solutions of KdV-Burgers-Kuramoto equation by Riccati equation. (Chinese. English summary) Zbl 1449.35145 J. Shandong Univ., Nat. Sci. 54, No. 12, 24-31 (2019). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{F. Lin} and \textit{Q. Zhang}, J. Shandong Univ., Nat. Sci. 54, No. 12, 24--31 (2019; Zbl 1449.35145) Full Text: DOI
Ding, Danping; Wang, Kai The decay property of solutions near the traveling waves for the second-order Camassa-Holm equation. (Chinese. English summary) Zbl 1449.35143 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 43, No. 6, 598-604 (2019). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{D. Ding} and \textit{K. Wang}, J. Jiangxi Norm. Univ., Nat. Sci. Ed. 43, No. 6, 598--604 (2019; Zbl 1449.35143) Full Text: DOI
Zhang, Lijuan; Wang, Fuchang Traveling wave solutions of a epidemic model with nonlocal diffusion, immigration and spatio-temporal delays. (Chinese. English summary) Zbl 1449.35149 Appl. Math., Ser. A (Chin. Ed.) 34, No. 4, 429-441 (2019). MSC: 35C07 35K57 92D30 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{F. Wang}, Appl. Math., Ser. A (Chin. Ed.) 34, No. 4, 429--441 (2019; Zbl 1449.35149) Full Text: DOI
Zhou, Yuqian; Liu, Qian Series solutions and bifurcation of traveling waves in the Benney-Kawahara-Lin equation. (English) Zbl 1437.37097 Nonlinear Dyn. 96, No. 3, 2055-2067 (2019). MSC: 37K50 35C07 35C10 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{Q. Liu}, Nonlinear Dyn. 96, No. 3, 2055--2067 (2019; Zbl 1437.37097) Full Text: DOI
Gao, Feng; Yang, Xiao-Jun; Ju, Yang Exact traveling-wave solutions for one-dimensional modified Korteweg-de Vries equation defined on Cantor sets. (English) Zbl 1433.35445 Fractals 27, No. 1, Article ID 1940010, 9 p. (2019). MSC: 35R11 28A80 35C07 PDF BibTeX XML Cite \textit{F. Gao} et al., Fractals 27, No. 1, Article ID 1940010, 9 p. (2019; Zbl 1433.35445) Full Text: DOI
Baev, A. V. On an inverse problem for the KdV equation with variable coefficient. (English. Russian original) Zbl 1435.35291 Math. Notes 106, No. 5, 837-841 (2019); translation from Mat. Zametki 106, No. 5, 788-792 (2019). MSC: 35Q35 35Q53 76N10 35R30 35R05 35C07 35A02 PDF BibTeX XML Cite \textit{A. V. Baev}, Math. Notes 106, No. 5, 837--841 (2019; Zbl 1435.35291); translation from Mat. Zametki 106, No. 5, 788--792 (2019) Full Text: DOI
Kudryashov, Nikolay A.; Safonova, Dariya V.; Biswas, Anjan Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation. (English) Zbl 1434.78022 Regul. Chaotic Dyn. 24, No. 6, 607-614 (2019). MSC: 78A60 37K10 35Q51 35Q55 35C07 33E05 35C05 35B10 35Q60 35C08 PDF BibTeX XML Cite \textit{N. A. Kudryashov} et al., Regul. Chaotic Dyn. 24, No. 6, 607--614 (2019; Zbl 1434.78022) Full Text: DOI
Zemlyanukhin, A. I.; Andrianov, I. V.; Bochkarev, A. V.; Mogilevich, L. I. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells. (English) Zbl 1430.37087 Nonlinear Dyn. 98, No. 1, 185-194 (2019). MSC: 37K40 35C07 35C08 PDF BibTeX XML Cite \textit{A. I. Zemlyanukhin} et al., Nonlinear Dyn. 98, No. 1, 185--194 (2019; Zbl 1430.37087) Full Text: DOI
Nepomnyashchy, A. A.; Volpert, V. A. Fronts in subdiffusive FitzHugh-Nagumo systems. (English) Zbl 1432.35044 Math. Model. Nat. Phenom. 14, No. 5, Paper No. 504, 14 p. (2019). MSC: 35C07 92C20 60J90 35K57 35R11 PDF BibTeX XML Cite \textit{A. A. Nepomnyashchy} and \textit{V. A. Volpert}, Math. Model. Nat. Phenom. 14, No. 5, Paper No. 504, 14 p. (2019; Zbl 1432.35044) Full Text: DOI
Wang, Zongyi Heteroclinic and traveling wave solutions for an SIR epidemic model with nonlocal response. (English) Zbl 1449.34125 Math. Appl. 32, No. 3, 559-569 (2019). MSC: 34C37 35C07 35K57 92D30 PDF BibTeX XML Cite \textit{Z. Wang}, Math. Appl. 32, No. 3, 559--569 (2019; Zbl 1449.34125)
Li, Kun; He, Yanli Traveling wave solutions in delayed higher dimensional lattice differential systems with partial monotonicity. (English) Zbl 1428.39015 Math. Nachr. 292, No. 12, 2624-2636 (2019). MSC: 39A14 37L60 PDF BibTeX XML Cite \textit{K. Li} and \textit{Y. He}, Math. Nachr. 292, No. 12, 2624--2636 (2019; Zbl 1428.39015) Full Text: DOI
Zhang, Bei; Xia, Yonghui; Zhu, Wenjing; Bai, Yuzhen Explicit exact traveling wave solutions and bifurcations of the generalized combined double \(\sinh\)-\(\cosh\)-Gordon equation. (English) Zbl 1433.35348 Appl. Math. Comput. 363, Article ID 124576, 26 p. (2019). MSC: 35Q53 35L71 35B10 35C07 35C08 37K40 PDF BibTeX XML Cite \textit{B. Zhang} et al., Appl. Math. Comput. 363, Article ID 124576, 26 p. (2019; Zbl 1433.35348) Full Text: DOI
Leta, Temesgen Desta; Li, Jibin Dynamical behavior of traveling wave solutions of a long waves-short waves resonance model. (English) Zbl 1432.34049 Qual. Theory Dyn. Syst. 18, No. 3, 741-760 (2019). MSC: 34C23 35L05 35C07 34A05 34C37 34C25 PDF BibTeX XML Cite \textit{T. D. Leta} and \textit{J. Li}, Qual. Theory Dyn. Syst. 18, No. 3, 741--760 (2019; Zbl 1432.34049) Full Text: DOI
Chirilus-Bruckner, M.; van Heijster, P.; Ikeda, H.; Rademacher, J. D. M. Unfolding symmetric Bogdanov-Takens bifurcations for front dynamics in a reaction-diffusion system. (English) Zbl 1427.35118 J. Nonlinear Sci. 29, No. 6, 2911-2953 (2019). MSC: 35K57 35C07 37L10 35B25 35B35 PDF BibTeX XML Cite \textit{M. Chirilus-Bruckner} et al., J. Nonlinear Sci. 29, No. 6, 2911--2953 (2019; Zbl 1427.35118) Full Text: DOI
Fang, Tao; Wang, Yun-Hu Lump-stripe interaction solutions to the potential Yu-Toda-Sasa-Fukuyama equation. (English) Zbl 1436.37087 Anal. Math. Phys. 9, No. 3, 1481-1495 (2019). MSC: 37K40 35C07 35Q51 PDF BibTeX XML Cite \textit{T. Fang} and \textit{Y.-H. Wang}, Anal. Math. Phys. 9, No. 3, 1481--1495 (2019; Zbl 1436.37087) Full Text: DOI
Kudryashov, Nikolay A. Exact solutions of the equation for surface waves in a convecting fluid. (English) Zbl 1428.35454 Appl. Math. Comput. 344-345, 97-106 (2019). MSC: 35Q53 35C05 35C07 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Appl. Math. Comput. 344--345, 97--106 (2019; Zbl 1428.35454) Full Text: DOI
Hafiz Uddin, M.; Akbar, Ali M.; Khan, Ashrafuzzaman Md.; Haque, Abdul Md. New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. (English) Zbl 1427.35321 AIMS Math. 4, No. 2, 199-214 (2019). MSC: 35R11 35Q53 35C07 35C08 35Q20 76B25 PDF BibTeX XML Cite \textit{M. Hafiz Uddin} et al., AIMS Math. 4, No. 2, 199--214 (2019; Zbl 1427.35321) Full Text: DOI
Hanaç, Esen On the evolution of solutions of Burgers equation on the positive quarter-plane. (English) Zbl 1428.65055 Demonstr. Math. 52, 237-248 (2019). MSC: 65M99 35B40 35B41 35C07 35Q53 PDF BibTeX XML Cite \textit{E. Hanaç}, Demonstr. Math. 52, 237--248 (2019; Zbl 1428.65055) Full Text: DOI
Kudryashov, Nikolay A.; Safonova, Dariya V. Nonautonomous first integrals and general solutions of the KdV-Burgers and mKdV-Burgers equations with the source. (English) Zbl 1428.34004 Math. Methods Appl. Sci. 42, No. 13, 4627-4636 (2019). MSC: 34A05 35C07 35Q53 PDF BibTeX XML Cite \textit{N. A. Kudryashov} and \textit{D. V. Safonova}, Math. Methods Appl. Sci. 42, No. 13, 4627--4636 (2019; Zbl 1428.34004) Full Text: DOI
Dong, Fang-Di; Li, Wan-Tong; Wang, Jia-Bing Propagation dynamics in a three-species competition model with nonlocal anisotropic dispersal. (English) Zbl 1425.92153 Nonlinear Anal., Real World Appl. 48, 232-266 (2019). MSC: 92D25 92D40 35C07 35Q92 PDF BibTeX XML Cite \textit{F.-D. Dong} et al., Nonlinear Anal., Real World Appl. 48, 232--266 (2019; Zbl 1425.92153) Full Text: DOI
Li, Kun Existence of traveling wave solutions in a stage structured cooperative system on higher-dimensional lattices. (English) Zbl 1426.37056 Rocky Mt. J. Math. 49, No. 5, 1617-1631 (2019). MSC: 37L60 34K10 39A12 35C07 PDF BibTeX XML Cite \textit{K. Li}, Rocky Mt. J. Math. 49, No. 5, 1617--1631 (2019; Zbl 1426.37056) Full Text: DOI Euclid
Song, Jiaqian; Liu, Xiaohua; Zheng, Renxiang The exact traveling wave solution of the \( (1+1)\)-dimensional integral differential Itô equation. (Chinese. English summary) Zbl 1438.35090 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 2, 138-143 (2019). MSC: 35C07 35R09 PDF BibTeX XML Cite \textit{J. Song} et al., J. Yunnan Minzu Univ., Nat. Sci. 28, No. 2, 138--143 (2019; Zbl 1438.35090) Full Text: DOI
Wang, Dan; Sun, Weiwei New exact solutions of Boussinesq equations. (English) Zbl 1438.35373 J. Qufu Norm. Univ., Nat. Sci. 45, No. 2, 8-14 (2019). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{D. Wang} and \textit{W. Sun}, J. Qufu Norm. Univ., Nat. Sci. 45, No. 2, 8--14 (2019; Zbl 1438.35373) Full Text: DOI
Qiu, Deqin; Cheng, Wenguang The \(n\)th-order degenerate breather solution for the Kundu-Eckhaus equation. (English) Zbl 1423.81069 Appl. Math. Lett. 98, 13-21 (2019). MSC: 81Q05 35Q55 35C08 35C07 35P30 PDF BibTeX XML Cite \textit{D. Qiu} and \textit{W. Cheng}, Appl. Math. Lett. 98, 13--21 (2019; Zbl 1423.81069) Full Text: DOI
Lou, Bendong; Lu, Junfan Spreading in a cone for the Fisher-KPP equation. (English) Zbl 1422.35113 J. Differ. Equations 267, No. 12, 7064-7084 (2019). MSC: 35K55 35K57 35B40 PDF BibTeX XML Cite \textit{B. Lou} and \textit{J. Lu}, J. Differ. Equations 267, No. 12, 7064--7084 (2019; Zbl 1422.35113) Full Text: DOI
Salako, Rachidi B. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. (English) Zbl 1423.35061 Discrete Contin. Dyn. Syst. 39, No. 10, 5945-5973 (2019). MSC: 35C07 35B35 35B40 35K57 35Q92 92C17 35K45 PDF BibTeX XML Cite \textit{R. B. Salako}, Discrete Contin. Dyn. Syst. 39, No. 10, 5945--5973 (2019; Zbl 1423.35061) Full Text: DOI
Das, Amiya; Ghosh, Niladri Bifurcation of traveling waves and exact solutions of Kadomtsev-Petviashvili modified equal width equation with fractional temporal evolution. (English) Zbl 1438.34002 Comput. Appl. Math. 38, No. 1, Paper No. 9, 16 p. (2019). MSC: 34A05 35C07 35R11 34A25 PDF BibTeX XML Cite \textit{A. Das} and \textit{N. Ghosh}, Comput. Appl. Math. 38, No. 1, Paper No. 9, 16 p. (2019; Zbl 1438.34002) Full Text: DOI
Pelinovsky, Efim; Talipova, Tatiana; Didenkulova, Ira; Didenkulova(Shurgalina), Ekaterina Interfacial long traveling waves in a two-layer fluid with variable depth. (English) Zbl 1418.35309 Stud. Appl. Math. 142, No. 4, 513-527 (2019). MSC: 35Q35 76B15 76B70 35B32 35C07 86A05 45B05 PDF BibTeX XML Cite \textit{E. Pelinovsky} et al., Stud. Appl. Math. 142, No. 4, 513--527 (2019; Zbl 1418.35309) Full Text: DOI
Hörmann, Günther; Okamoto, Hisashi Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation. (English) Zbl 1415.35242 Discrete Contin. Dyn. Syst. 39, No. 8, 4455-4469 (2019). MSC: 35Q53 35D30 PDF BibTeX XML Cite \textit{G. Hörmann} and \textit{H. Okamoto}, Discrete Contin. Dyn. Syst. 39, No. 8, 4455--4469 (2019; Zbl 1415.35242) Full Text: DOI
Wang, Heng; Zheng, Shuhua A note on bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrödinger equation. (English) Zbl 1420.35386 Anal. Math. Phys. 9, No. 1, 251-261 (2019). MSC: 35Q55 35C07 35B32 35B44 PDF BibTeX XML Cite \textit{H. Wang} and \textit{S. Zheng}, Anal. Math. Phys. 9, No. 1, 251--261 (2019; Zbl 1420.35386) Full Text: DOI
Kogelbauer, F.; Rubin, M. B. A class of exact nonlinear traveling wave solutions for shallow water with a non-stationary bottom surface. (English) Zbl 07073356 Eur. J. Mech., B, Fluids 76, 26-31 (2019). MSC: 76 PDF BibTeX XML Cite \textit{F. Kogelbauer} and \textit{M. B. Rubin}, Eur. J. Mech., B, Fluids 76, 26--31 (2019; Zbl 07073356) Full Text: DOI
Zhang, Qiu; Wu, Shi-Liang Wave propagation of a discrete SIR epidemic model with a saturated incidence rate. (English) Zbl 1415.92201 Int. J. Biomath. 12, No. 3, Article ID 1950029, 18 p. (2019). MSC: 92D30 35K57 35B40 34K30 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{S.-L. Wu}, Int. J. Biomath. 12, No. 3, Article ID 1950029, 18 p. (2019; Zbl 1415.92201) Full Text: DOI
Rattanakul, Chontita; Lenbury, Yongwimon; Suksamran, Jeerawan Analysis of advection-diffusion-reaction model for fish population movement with impulsive tagging: stability and traveling wave solution. (English) Zbl 07062680 Adv. Difference Equ. 2019, Paper No. 218, 15 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{C. Rattanakul} et al., Adv. Difference Equ. 2019, Paper No. 218, 15 p. (2019; Zbl 07062680) Full Text: DOI
Huang, Qiuling; Hou, Xiaojie Monotone iteration scheme and its application to partial differential equation systems with mixed nonlocal and degenerate diffusions. (English) Zbl 07057072 Electron. J. Differ. Equ. 2019, Paper No. 51, 21 p. (2019). MSC: 35C07 35B40 PDF BibTeX XML Cite \textit{Q. Huang} and \textit{X. Hou}, Electron. J. Differ. Equ. 2019, Paper No. 51, 21 p. (2019; Zbl 07057072) Full Text: Link
Chen, Chao-Nien; Lin, Che-Hao; Tzeng, Shyuh-Yaur Localized front structures in FitzHugh-Nagumo equations. (English) Zbl 1415.34048 Taiwanese J. Math. 23, No. 2, 333-349 (2019). MSC: 34B08 34C37 35K57 34C07 34B40 PDF BibTeX XML Cite \textit{C.-N. Chen} et al., Taiwanese J. Math. 23, No. 2, 333--349 (2019; Zbl 1415.34048) Full Text: DOI Euclid
Jimbo, Shuichi; Morita, Yoshihisa Entire solutions to reaction-diffusion equations in multiple half-lines with a junction. (English) Zbl 1412.35179 J. Differ. Equations 267, No. 2, 1247-1276 (2019). MSC: 35K57 35B08 35B35 35B40 PDF BibTeX XML Cite \textit{S. Jimbo} and \textit{Y. Morita}, J. Differ. Equations 267, No. 2, 1247--1276 (2019; Zbl 1412.35179) Full Text: DOI
Liu, Yang; Wang, Xin The construction of solutions to Zakharov-Kuznetsov equation with fractional power nonlinear terms. (English) Zbl 07048545 Adv. Difference Equ. 2019, Paper No. 134, 12 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{X. Wang}, Adv. Difference Equ. 2019, Paper No. 134, 12 p. (2019; Zbl 07048545) Full Text: DOI
Cao, Damin; Du, Lijuan The classification of the single traveling wave solutions to \((1+1)\) dimensional Gardner equation with variable coefficients. (English) Zbl 07048533 Adv. Difference Equ. 2019, Paper No. 121, 15 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{D. Cao} and \textit{L. Du}, Adv. Difference Equ. 2019, Paper No. 121, 15 p. (2019; Zbl 07048533) Full Text: DOI
Rao, Jiguang; He, Jingsong; Mihalache, Dumitru; Cheng, Yi Dynamics and interaction scenarios of localized wave structures in the Kadomtsev-Petviashvili-based system. (English) Zbl 1412.35051 Appl. Math. Lett. 94, 166-173 (2019). MSC: 35C07 35A22 35Q55 35K57 PDF BibTeX XML Cite \textit{J. Rao} et al., Appl. Math. Lett. 94, 166--173 (2019; Zbl 1412.35051) Full Text: DOI
Li, Jibin; Chen, Guanrong; Deng, Shengfu Smooth exact traveling wave solutions determined by singular nonlinear traveling wave systems: two models. (English) Zbl 1415.34003 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 4, Article ID 1950047, 13 p. (2019). MSC: 34A05 34C37 34C05 35C07 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 4, Article ID 1950047, 13 p. (2019; Zbl 1415.34003) Full Text: DOI
Nuruddeen, Rahmatullah Ibrahim; Aboodh, Khalid Suliman; Ali, Khalid K. Constructing logistic function-type solitary wave solutions to Burgers and Sharma-Tasso-Olver equations. (English) Zbl 1412.35056 Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 5, 5 p. (2019). MSC: 35C08 35Q53 35C07 PDF BibTeX XML Cite \textit{R. I. Nuruddeen} et al., Int. J. Appl. Comput. Math. 5, No. 1, Paper No. 5, 5 p. (2019; Zbl 1412.35056) Full Text: DOI
Zhu, Wenjing; Xia, Yonghui; Zhang, Bei; Bai, Yuzhen Exact traveling wave solutions and bifurcations of the time-fractional differential equations with applications. (English) Zbl 1411.35061 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 3, Article ID 1950041, 24 p. (2019). MSC: 35C07 35R11 34A05 34C23 PDF BibTeX XML Cite \textit{W. Zhu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 3, Article ID 1950041, 24 p. (2019; Zbl 1411.35061) Full Text: DOI
Ruan, W. H.; Feng, Wei; Lu, Xin Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasi-monotonicity. (English) Zbl 1408.35084 Appl. Anal. 98, No. 5, 934-968 (2019). MSC: 35K57 35Q92 35C07 35K59 92D25 PDF BibTeX XML Cite \textit{W. H. Ruan} et al., Appl. Anal. 98, No. 5, 934--968 (2019; Zbl 1408.35084) Full Text: DOI
Gao, Pei; Wu, Shi Liang Qualitative properties of traveling wavefronts for a three-component lattice dynamical system with delay. (English) Zbl 1410.34188 Electron. J. Differ. Equ. 2019, Paper No. 34, 19 p. (2019). MSC: 34K10 35B40 35R10 58D25 34K31 35C07 PDF BibTeX XML Cite \textit{P. Gao} and \textit{S. L. Wu}, Electron. J. Differ. Equ. 2019, Paper No. 34, 19 p. (2019; Zbl 1410.34188) Full Text: Link
Li, Jibin; Chen, Guanrong More on bifurcations and dynamics of traveling wave solutions for a higher-order shallow water wave equation. (English) Zbl 1415.34074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950014, 13 p. (2019). MSC: 34C23 35C07 76B15 34C37 34C05 PDF BibTeX XML Cite \textit{J. Li} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950014, 13 p. (2019; Zbl 1415.34074) Full Text: DOI
Wei, Minzhi; Sun, Xianbo; Zhu, Hongying Bifurcations of traveling wave solutions for a generalized Camassa-Holm equation. (English) Zbl 07303499 J. Appl. Anal. Comput. 8, No. 6, 1851-1862 (2018). MSC: 35C08 35C07 35B32 37K40 74J35 35Q51 PDF BibTeX XML Cite \textit{M. Wei} et al., J. Appl. Anal. Comput. 8, No. 6, 1851--1862 (2018; Zbl 07303499) Full Text: DOI
Leta, Temesgen Desta; Li, Jibin Dynamical behaviour and exact solutions of thirteenth order derivative nonlinear Schrödinger equation. (English) Zbl 07303032 J. Appl. Anal. Comput. 8, No. 1, 250-271 (2018). Reviewer: Hong Li (Jiujiang) MSC: 34A05 34C25 34C05 34C37 34M55 35Q55 35C07 PDF BibTeX XML Cite \textit{T. D. Leta} and \textit{J. Li}, J. Appl. Anal. Comput. 8, No. 1, 250--271 (2018; Zbl 07303032) Full Text: DOI
Zhao, Xiangkui A note on traveling wave solutions of a diffusive predator-prey model. (English) Zbl 07265203 Commun. Nonlinear Sci. Numer. Simul. 62, 174-183 (2018). MSC: 35K 92D PDF BibTeX XML Cite \textit{X. Zhao}, Commun. Nonlinear Sci. Numer. Simul. 62, 174--183 (2018; Zbl 07265203) Full Text: DOI
Zhuang, Danli; Ma, Songhua New exact solutions and kind wave excitations of the \((2+1)\)-dimensional dissipative Zabolotskaya-Khokhlov equation. (English) Zbl 1433.35329 Far East J. Dyn. Syst. 30, No. 1, 27-35 (2018). MSC: 35Q51 35Q53 68W30 PDF BibTeX XML Cite \textit{D. Zhuang} and \textit{S. Ma}, Far East J. Dyn. Syst. 30, No. 1, 27--35 (2018; Zbl 1433.35329) Full Text: DOI
Ding, Xin; Song, Ming New exact travelling wave solutions for the \((2+1)\)-dimensional Boiti-Leon-Pempinelli equations. (English) Zbl 1432.35041 Far East J. Appl. Math. 100, No. 4, 257-267 (2018). MSC: 35C07 35B65 76B25 35Q51 PDF BibTeX XML Cite \textit{X. Ding} and \textit{M. Song}, Far East J. Appl. Math. 100, No. 4, 257--267 (2018; Zbl 1432.35041) Full Text: DOI