Liu, Jinjing; Guo, Zhenhua Nonlinear stability of large amplitude viscous shock waves to the one-dimensional system of viscoelasticity. (English) Zbl 07332084 SIAM J. Math. Anal. 53, No. 2, 1818-1830 (2021). MSC: 35B35 35B40 35C07 35L67 76N10 76A10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{Z. Guo}, SIAM J. Math. Anal. 53, No. 2, 1818--1830 (2021; Zbl 07332084) Full Text: DOI
El-Hachem, Maud; McCue, Scott W.; Simpson, Matthew J. Invading and receding sharp-fronted travelling waves. (English) Zbl 07331885 Bull. Math. Biol. 83, No. 4, Paper No. 35, 25 p. (2021). MSC: 92D40 35C07 35B20 PDF BibTeX XML Cite \textit{M. El-Hachem} et al., Bull. Math. Biol. 83, No. 4, Paper No. 35, 25 p. (2021; Zbl 07331885) Full Text: DOI
Hu, Haijun; Deng, Litian; Huang, Jianhua Traveling wave of a nonlocal dispersal Lotka-Volterra cooperation model under shifting habitat. (English) Zbl 07330919 J. Math. Anal. Appl. 500, No. 1, Article ID 125100, 13 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{H. Hu} et al., J. Math. Anal. Appl. 500, No. 1, Article ID 125100, 13 p. (2021; Zbl 07330919) Full Text: DOI
Deng, Dong; Li, Jianzhong; Zhang, Dongpei Existence of traveling waves for a nonlocal dispersal SIR epidemic model with treatment. (English) Zbl 07330747 J. Math. Anal. Appl. 499, No. 2, Article ID 125009, 39 p. (2021). MSC: 92D30 92C60 35C07 PDF BibTeX XML Cite \textit{D. Deng} et al., J. Math. Anal. Appl. 499, No. 2, Article ID 125009, 39 p. (2021; Zbl 07330747) Full Text: DOI
Zhang, Qian; Zhang, Guo-Bao Front-like entire solutions for a Lotka-Volterra weak competition system with nonlocal dispersal. (English) Zbl 07329761 J. Dyn. Control Syst. 27, No. 1, 133-151 (2021). MSC: 35B08 35K57 35C07 35B40 35B51 92D25 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{G.-B. Zhang}, J. Dyn. Control Syst. 27, No. 1, 133--151 (2021; Zbl 07329761) Full Text: DOI
Du, Yihong; Gui, Changfeng; Wang, Kelei; Zhou, Maolin Semi-waves with \(\Lambda\)-shaped free boundary for nonlinear Stefan problems: existence. (English) Zbl 07329494 Proc. Am. Math. Soc. 149, No. 5, 2091-2104 (2021). MSC: 35R35 35C07 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Du} et al., Proc. Am. Math. Soc. 149, No. 5, 2091--2104 (2021; Zbl 07329494) Full Text: DOI
Wang, Xiunan; Wang, Hao; Li, Michael Y. Modeling rabies transmission in spatially heterogeneous environments via \(\theta \)-diffusion. (English) Zbl 07328505 Bull. Math. Biol. 83, No. 2, Paper No. 16, 38 p. (2021). MSC: 92D30 92C60 35Q92 PDF BibTeX XML Cite \textit{X. Wang} et al., Bull. Math. Biol. 83, No. 2, Paper No. 16, 38 p. (2021; Zbl 07328505) Full Text: DOI
Ramaj, Tedi On the mathematical modelling of competitive invasive weed dynamics. (English) Zbl 07328502 Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021). MSC: 92D25 35C07 PDF BibTeX XML Cite \textit{T. Ramaj}, Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021; Zbl 07328502) Full Text: DOI
Fu, Sheng-Chen; Mimura, Masayasu; Tsai, Je-Chiang Traveling waves for a three-component reaction-diffusion model of farmers and hunter-gatherers in the Neolithic transition. (English) Zbl 07327691 J. Math. Biol. 82, No. 4, Paper No. 26, 36 p. (2021). MSC: 92D 35K57 35C07 35Q92 PDF BibTeX XML Cite \textit{S.-C. Fu} et al., J. Math. Biol. 82, No. 4, Paper No. 26, 36 p. (2021; Zbl 07327691) Full Text: DOI
Ding, Yujie; Ermentrout, Bard Traveling waves in non-local pulse-coupled networks. (English) Zbl 07327683 J. Math. Biol. 82, No. 3, Paper No. 18, 21 p. (2021). MSC: 92B20 35C07 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{B. Ermentrout}, J. Math. Biol. 82, No. 3, Paper No. 18, 21 p. (2021; Zbl 07327683) Full Text: DOI
James, Guillaume Traveling fronts in dissipative granular chains and nonlinear lattices. (English) Zbl 07324167 Nonlinearity 34, No. 3, 1758-1790 (2021). MSC: 37L60 34E13 70K44 74M20 74J30 49M15 PDF BibTeX XML Cite \textit{G. James}, Nonlinearity 34, No. 3, 1758--1790 (2021; Zbl 07324167) Full Text: DOI
Coville, Jérôme; Gui, Changfeng; Zhao, Mingfeng Propagation acceleration in reaction diffusion equations with anomalous diffusions. (English) Zbl 07324160 Nonlinearity 34, No. 3, 1544-1576 (2021). MSC: 35B51 35K15 35K55 35K57 35R09 35R11 35C07 PDF BibTeX XML Cite \textit{J. Coville} et al., Nonlinearity 34, No. 3, 1544--1576 (2021; Zbl 07324160) Full Text: DOI
Decker, Robert J.; Demirkaya, A.; Kevrekidis, P. G.; Iglesias, Digno; Severino, Jeff; Shavit, Yonatan Kink dynamics in a nonlinear beam model. (English) Zbl 07323683 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105747, 14 p. (2021). MSC: 76B25 35Q51 PDF BibTeX XML Cite \textit{R. J. Decker} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105747, 14 p. (2021; Zbl 07323683) Full Text: DOI
Thanh, Mai Duc; Vinh, Duong Xuan On traveling waves in compressible Euler equations with thermal conductivity. (English) Zbl 07323127 Bull. Iran. Math. Soc. 47, No. 1, 75-89 (2021). MSC: 35C07 34D45 35L65 76L05 76N10 76T10 PDF BibTeX XML Cite \textit{M. D. Thanh} and \textit{D. X. Vinh}, Bull. Iran. Math. Soc. 47, No. 1, 75--89 (2021; Zbl 07323127) Full Text: DOI
Li, Jibin; Chen, Guanrong; Zhou, Yan Bifurcations and exact traveling wave solutions of two shallow water two-component systems. (English) Zbl 07321532 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150001, 13 p. (2021). MSC: 35Q35 37K40 35C07 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150001, 13 p. (2021; Zbl 07321532) Full Text: DOI
Haragus, Mariana; Johnson, Mathew A.; Perkins, Wesley R. Linear modulational and subharmonic dynamics of spectrally stable Lugiato-Lefever periodic waves. (English) Zbl 07319434 J. Differ. Equations 280, 315-354 (2021). MSC: 35Q55 35B 35K 35C 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{M. Haragus} et al., J. Differ. Equations 280, 315--354 (2021; Zbl 07319434) Full Text: DOI
Chen, Yu-Shuo; Giletti, Thomas; Guo, Jong-Shenq Persistence of preys in a diffusive three species predator-prey system with a pair of strong-weak competing preys. (English) Zbl 07319418 J. Differ. Equations 281, 341-378 (2021). MSC: 35K40 35K57 34B40 92D25 35K55 35B05 35B40 PDF BibTeX XML Cite \textit{Y.-S. Chen} et al., J. Differ. Equations 281, 341--378 (2021; Zbl 07319418) Full Text: DOI
Brauner, Claude-Michel; Roussarie, Robert; Shang, Peipei; Zhang, Linwan Existence of a traveling wave solution in a free interface problem with fractional order kinetics. (English) Zbl 07319412 J. Differ. Equations 281, 105-147 (2021). MSC: 35R35 35C07 34C05 34A26 80A25 35K57 35B35 35K40 80A25 PDF BibTeX XML Cite \textit{C.-M. Brauner} et al., J. Differ. Equations 281, 105--147 (2021; Zbl 07319412) Full Text: DOI
Liu, Gege; Xu, Tianyuan; Yin, Jingxue Forced waves of reaction-diffusion model with density-dependent dispersal in shifting environments. (English) Zbl 07319393 J. Differ. Equations 282, 127-147 (2021). MSC: 35C07 35K65 35K15 35K57 92D25 PDF BibTeX XML Cite \textit{G. Liu} et al., J. Differ. Equations 282, 127--147 (2021; Zbl 07319393) Full Text: DOI
Fang, Jian; Peng, Rui; Zhao, Xiao-Qiang Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. (English. French summary) Zbl 07319302 J. Math. Pures Appl. (9) 147, 1-28 (2021). MSC: 35C07 35B40 35K57 92D25 PDF BibTeX XML Cite \textit{J. Fang} et al., J. Math. Pures Appl. (9) 147, 1--28 (2021; Zbl 07319302) Full Text: DOI
Büyükaşık, Şirin A.; Bozacı, Aylin Dynamical properties of generalized traveling waves of exactly solvable forced Burgers equations with variable coefficients. (English) Zbl 07319175 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105682, 21 p. (2021). MSC: 35Q53 35C05 35K15 35C07 35A08 PDF BibTeX XML Cite \textit{Ş. A. Büyükaşık} and \textit{A. Bozacı}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105682, 21 p. (2021; Zbl 07319175) Full Text: DOI
Monobe, H.; Ninomiya, H. Compact traveling waves for anisotropic curvature flows with driving force. (English) Zbl 07319096 Trans. Am. Math. Soc. 374, No. 4, 2447-2477 (2021). MSC: 35C07 53E10 PDF BibTeX XML Cite \textit{H. Monobe} and \textit{H. Ninomiya}, Trans. Am. Math. Soc. 374, No. 4, 2447--2477 (2021; Zbl 07319096) Full Text: DOI
de Laire, André; Gravejat, Philippe The cubic Schrödinger regime of the Landau-Lifshitz equation with a strong easy-axis anisotropy. (English) Zbl 07318520 Rev. Mat. Iberoam. 37, No. 1, 95-128 (2021). MSC: 35Q60 35Q55 37K40 35C07 82D40 PDF BibTeX XML Cite \textit{A. de Laire} and \textit{P. Gravejat}, Rev. Mat. Iberoam. 37, No. 1, 95--128 (2021; Zbl 07318520) Full Text: DOI
Watt, S. D.; Sidhu, H. S.; McIntosh, A. C.; Brindley, J. Chaotic flow in competitive exothermic-endothermic reaction systems. (English) Zbl 07317522 Appl. Math. Lett. 115, Article ID 106960, 7 p. (2021). MSC: 80A25 80A32 35C07 35Q79 PDF BibTeX XML Cite \textit{S. D. Watt} et al., Appl. Math. Lett. 115, Article ID 106960, 7 p. (2021; Zbl 07317522) Full Text: DOI
Chang, Chueh-Hsin; Yang, Tzi-Sheng Stability of semi-trivial wavefronts in reaction-diffusion systems. (English) Zbl 07315344 J. Math. Anal. Appl. 495, No. 1, Article ID 124658, 17 p. (2021). MSC: 35B35 35K57 35P15 35C07 PDF BibTeX XML Cite \textit{C.-H. Chang} and \textit{T.-S. Yang}, J. Math. Anal. Appl. 495, No. 1, Article ID 124658, 17 p. (2021; Zbl 07315344) Full Text: DOI
Brauner, Claude-Michel; Lorenzi, Luca Instability of free interfaces in premixed flame propagation. (English) Zbl 07314572 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 575-596 (2021). MSC: 35R35 35C07 35B35 35K40 47D06 80A25 PDF BibTeX XML Cite \textit{C.-M. Brauner} and \textit{L. Lorenzi}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 575--596 (2021; Zbl 07314572) Full Text: DOI
Cheng, Feifei; Li, Ji Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. (English) Zbl 07314369 Discrete Contin. Dyn. Syst. 41, No. 2, 967-985 (2021). Reviewer: Temesgen Desta Leta (Nanjing) MSC: 34E15 34C37 35C07 PDF BibTeX XML Cite \textit{F. Cheng} and \textit{J. Li}, Discrete Contin. Dyn. Syst. 41, No. 2, 967--985 (2021; Zbl 07314369) Full Text: DOI
Ninomiya, Hirokazu Entire solutions of the Allen-Cahn-Nagumo equation in a multi-dimensional space. (English) Zbl 07314169 Discrete Contin. Dyn. Syst. 41, No. 1, 395-412 (2021). MSC: 35B08 35K57 35C07 35B40 35B06 PDF BibTeX XML Cite \textit{H. Ninomiya}, Discrete Contin. Dyn. Syst. 41, No. 1, 395--412 (2021; Zbl 07314169) Full Text: DOI
Leta, Temesgen Desta; Liu, Wenjun; Achab, Abdelfattah El; Rezazadeh, Hadi; Bekir, Ahmet Dynamical behavior of traveling wave solutions for a \((2+1)\)-dimensional Bogoyavlenskii coupled system. (English) Zbl 07314139 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 14, 23 p. (2021). MSC: 37K40 35C07 35C08 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 14, 23 p. (2021; Zbl 07314139) Full Text: DOI
Fadai, Nabil T. Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model. (English) Zbl 07312083 Nonlinearity 34, No. 2, 725-743 (2021). MSC: 35C07 35K57 34B16 41A60 35R37 PDF BibTeX XML Cite \textit{N. T. Fadai}, Nonlinearity 34, No. 2, 725--743 (2021; Zbl 07312083) Full Text: DOI
Ducrot, Arnaud; Giletti, Thomas; Guo, Jong-Shenq; Shimojo, Masahiko Asymptotic spreading speeds for a predator-prey system with two predators and one prey. (English) Zbl 07312081 Nonlinearity 34, No. 2, 669-704 (2021). MSC: 35C07 35K45 35K57 92D25 PDF BibTeX XML Cite \textit{A. Ducrot} et al., Nonlinearity 34, No. 2, 669--704 (2021; Zbl 07312081) Full Text: DOI
Yan, Weifang Traveling waves in a stage-structured predator-prey model with Holling type functional response. (English) Zbl 07311103 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407-434 (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{W. Yan}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407--434 (2021; Zbl 07311103) Full Text: DOI
Darwich, Mohamad; Israwi, Samer On the generalized nonlinear Camassa-Holm equation. (English) Zbl 07311009 Anal. Math. Phys. 11, No. 1, Paper No. 39, 12 p. (2021). MSC: 35C07 47G30 35G25 35A01 PDF BibTeX XML Cite \textit{M. Darwich} and \textit{S. Israwi}, Anal. Math. Phys. 11, No. 1, Paper No. 39, 12 p. (2021; Zbl 07311009) Full Text: DOI
Polyanin, Andrei D.; Sorokin, Vsevolod G. A method for constructing exact solutions of nonlinear delay PDEs. (English) Zbl 07310653 J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 35D99 34K10 35B20 35K57 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{V. G. Sorokin}, J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021; Zbl 07310653) Full Text: DOI
Yang, C.; Rodríguez, N. Existence and stability traveling wave solutions for a system of social outbursts. (English) Zbl 07309691 J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021). MSC: 35C07 35K45 35K57 35Q91 PDF BibTeX XML Cite \textit{C. Yang} and \textit{N. Rodríguez}, J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021; Zbl 07309691) Full Text: DOI
Sheng, Wei-Jie; Wang, Mingxin; Wang, Zhi-Cheng Entire solutions of time periodic bistable Lotka-Volterra competition-diffusion systems in \(\mathbb{R}^N\). (English) Zbl 07309247 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 37, 47 p. (2021). MSC: 35C07 35K57 35B08 PDF BibTeX XML Cite \textit{W.-J. Sheng} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 37, 47 p. (2021; Zbl 07309247) Full Text: DOI
Chu, Jifeng; Yang, Yanjuan A cylindrical coordinates approach to constant vorticity geophysical waves with centripetal forces at arbitrary latitude. (English) Zbl 07308682 J. Differ. Equations 279, 46-62 (2021). MSC: 35Q31 35Q86 35J60 76B15 76U60 35C07 76B47 76B45 86A05 PDF BibTeX XML Cite \textit{J. Chu} and \textit{Y. Yang}, J. Differ. Equations 279, 46--62 (2021; Zbl 07308682) Full Text: DOI
Wei, Jingdong; Zhou, Jiangbo; Zhen, Zaili; Tian, Lixin Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model. (English) Zbl 07308678 Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021). MSC: 35C07 35B10 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Wei} et al., Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021; Zbl 07308678) Full Text: DOI
Guo, Hongjun; Monobe, Harunori \(V\)-shaped fronts around an obstacle. (English) Zbl 07307522 Math. Ann. 379, No. 1-2, 661-689 (2021). MSC: 35K57 35A18 35B08 35B30 35C07 35K20 PDF BibTeX XML Cite \textit{H. Guo} and \textit{H. Monobe}, Math. Ann. 379, No. 1--2, 661--689 (2021; Zbl 07307522) Full Text: DOI
Gordon, Peter V.; Hegde, Uday G.; Hicks, Michael C. On traveling front of ignition in co-flow laminar reactive jets. (English) Zbl 07307309 SIAM J. Appl. Math. 81, No. 1, 47-59 (2021). MSC: 35C05 35C07 35C15 35K57 80A25 PDF BibTeX XML Cite \textit{P. V. Gordon} et al., SIAM J. Appl. Math. 81, No. 1, 47--59 (2021; Zbl 07307309) Full Text: DOI
McCue, Scott W.; El-Hachem, Maud; Simpson, Matthew J. Exact sharp-fronted travelling wave solutions of the Fisher-KPP equation. (English) Zbl 07307181 Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021). MSC: 35C07 35K57 35K20 PDF BibTeX XML Cite \textit{S. W. McCue} et al., Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021; Zbl 07307181) Full Text: DOI
Li, Dong; He, Xiaolong; Li, Xinping; Guo, Shangjiang Traveling wavefronts in a two-species chemotaxis model with Lotka-Volterra competitive kinetics. (English) Zbl 07307175 Appl. Math. Lett. 114, Article ID 106905, 8 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35Q92 35C07 PDF BibTeX XML Cite \textit{D. Li} et al., Appl. Math. Lett. 114, Article ID 106905, 8 p. (2021; Zbl 07307175) Full Text: DOI
Yamano, Takuya; Ourabah, Kamel Gaussian traveling wave solutions for two argument-Schrödinger equations under potentials. (English) Zbl 07307165 Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021). MSC: 35C07 35Q55 PDF BibTeX XML Cite \textit{T. Yamano} and \textit{K. Ourabah}, Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021; Zbl 07307165) Full Text: DOI
Wu, Chin-Chin On the stable tail limit of traveling wave for a predator-prey system with nonlocal dispersal. (English) Zbl 07307153 Appl. Math. Lett. 113, Article ID 106855, 6 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{C.-C. Wu}, Appl. Math. Lett. 113, Article ID 106855, 6 p. (2021; Zbl 07307153) Full Text: DOI
Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, Luis Miguel Modulated equations of Hamiltonian PDEs and dispersive shocks. (English) Zbl 07303411 Nonlinearity 34, No. 1, 578-641 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35Q35 35C07 35C08 35B10 35B40 37K45 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 34, No. 1, 578--641 (2021; Zbl 07303411) Full Text: DOI
Leta, Temesgen Desta; Liu, Wenjun; Ding, Jian Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications. (English) Zbl 07302481 Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021). Reviewer: Xiang-Sheng Wang (Lafayette) MSC: 34A05 34C23 34C37 34C25 35C07 35R11 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021; Zbl 07302481) Full Text: DOI
Zheng, Hang; Xia, Yonghui; Bai, Yuzhen; Wu, Luoyi Travelling wave solutions of the general regularized long wave equation. (English) Zbl 07302071 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 8, 21 p. (2021). MSC: 34A05 34C23 35C07 35L05 PDF BibTeX XML Cite \textit{H. Zheng} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 8, 21 p. (2021; Zbl 07302071) Full Text: DOI
Zhang, Chao; Xu, Yan; Xia, Yinhua Local discontinuous Galerkin methods to a dispersive system of KdV-type equations. (English) Zbl 07301282 J. Sci. Comput. 86, No. 1, Paper No. 4, 43 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 65M60 65N30 35C07 35C08 65L06 PDF BibTeX XML Cite \textit{C. Zhang} et al., J. Sci. Comput. 86, No. 1, Paper No. 4, 43 p. (2021; Zbl 07301282) Full Text: DOI
Polyanin, Andrei D.; Sorokin, Vsevolod G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay. (English) Zbl 07299038 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105634, 15 p. (2021). MSC: 35C05 35C07 35K57 35R10 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{V. G. Sorokin}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105634, 15 p. (2021; Zbl 07299038) Full Text: DOI
Feng, Yan-Xia; Li, Wan-Tong; Yang, Fei-Ying Traveling waves in a nonlocal dispersal SIR model with non-monotone incidence. (English) Zbl 07299033 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105629, 22 p. (2021). MSC: 35C07 35K57 92D30 PDF BibTeX XML Cite \textit{Y.-X. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105629, 22 p. (2021; Zbl 07299033) Full Text: DOI
Xu, Zhaoquan Global stability of travelling waves for a class of monostable epidemic models. (English) Zbl 07299008 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021). MSC: 35Q92 92D30 35B35 35C07 PDF BibTeX XML Cite \textit{Z. Xu}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105595, 16 p. (2021; Zbl 07299008) Full Text: DOI
Dong, Fang-Di; Li, Bingtuan; Li, Wan-Tong Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat. (English) Zbl 1455.92120 J. Differ. Equations 276, 433-459 (2021). MSC: 92D25 92D40 35C07 PDF BibTeX XML Cite \textit{F.-D. Dong} et al., J. Differ. Equations 276, 433--459 (2021; Zbl 1455.92120) Full Text: DOI
de Rijk, Björn; Sandstede, Björn Reprint of: “Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems”. (English) Zbl 1455.35039 J. Differ. Equations 274, 1223-1261 (2021). MSC: 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{B. Sandstede}, J. Differ. Equations 274, 1223--1261 (2021; Zbl 1455.35039) Full Text: DOI
Kim, Sunghoon; Lee, Ki-Ahm System of porous medium equations. (English) Zbl 1455.35020 J. Differ. Equations 272, 433-472 (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B40 35K65 35K40 35C07 92D25 PDF BibTeX XML Cite \textit{S. Kim} and \textit{K.-A. Lee}, J. Differ. Equations 272, 433--472 (2021; Zbl 1455.35020) Full Text: DOI
Zhang, Li; Bao, Xiongxiong Propagation dynamics of a three-species nonlocal competitive-cooperative system. (English) Zbl 1454.35046 Nonlinear Anal., Real World Appl. 58, Article ID 103230, 17 p. (2021). MSC: 35C07 35K45 35R09 35B40 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{X. Bao}, Nonlinear Anal., Real World Appl. 58, Article ID 103230, 17 p. (2021; Zbl 1454.35046) Full Text: DOI
Hu, Haijun; Zou, Xingfu Traveling waves of a diffusive SIR epidemic model with general nonlinear incidence and infinitely distributed latency but without demography. (English) Zbl 1453.92302 Nonlinear Anal., Real World Appl. 58, Article ID 103224, 24 p. (2021). MSC: 92D30 35C07 44A10 PDF BibTeX XML Cite \textit{H. Hu} and \textit{X. Zou}, Nonlinear Anal., Real World Appl. 58, Article ID 103224, 24 p. (2021; Zbl 1453.92302) Full Text: DOI
Ding, Danping; Wang, Kai Blow-up solution near the traveling waves for the second-order Camassa-Holm equation. (English) Zbl 1454.35036 Nonlinear Anal., Real World Appl. 58, Article ID 103209, 21 p. (2021). MSC: 35B44 35B35 35G25 47A50 35C07 35A22 PDF BibTeX XML Cite \textit{D. Ding} and \textit{K. Wang}, Nonlinear Anal., Real World Appl. 58, Article ID 103209, 21 p. (2021; Zbl 1454.35036) Full Text: DOI
Zhang, Ran; Liu, Lili; Feng, Xiaomei; Jin, Zhen Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression. (English) Zbl 1455.35272 Appl. Math. Lett. 112, Article ID 106848, 7 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92C50 35C07 PDF BibTeX XML Cite \textit{R. Zhang} et al., Appl. Math. Lett. 112, Article ID 106848, 7 p. (2021; Zbl 1455.35272) Full Text: DOI
Zheng, Xiaoxiao; Xiao, Qizhen; Ouyang, Zigen A smooth soliton solution and a periodic cuspon solution of the Novikov equation. (English) Zbl 1453.35042 Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021). MSC: 35C07 35C08 35B10 35G25 35B32 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021; Zbl 1453.35042) Full Text: DOI
Du, Zengji; Liu, Jiang; Ren, Yulin Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach. (English) Zbl 1452.35219 J. Differ. Equations 270, 1019-1042 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 92C17 35C07 34D15 35B25 PDF BibTeX XML Cite \textit{Z. Du} et al., J. Differ. Equations 270, 1019--1042 (2021; Zbl 1452.35219) Full Text: DOI
Chen, Shyan-Shiou Traveling wave solutions of diffusive Hindmarsh-Rose-type equations with recurrent neural feedback. (English) Zbl 1450.35105 J. Math. Anal. Appl. 493, No. 1, Article ID 124513, 18 p. (2021). MSC: 35C07 35B32 92C20 PDF BibTeX XML Cite \textit{S.-S. Chen}, J. Math. Anal. Appl. 493, No. 1, Article ID 124513, 18 p. (2021; Zbl 1450.35105) Full Text: DOI
Murphy, R. J.; Buenzli, P. R.; Baker, R. E.; Simpson, M. J. Travelling waves in a free boundary mechanobiological model of an epithelial tissue. (English) Zbl 1450.35110 Appl. Math. Lett. 111, Article ID 106636, 6 p. (2021). MSC: 35C07 35R35 35Q92 PDF BibTeX XML Cite \textit{R. J. Murphy} et al., Appl. Math. Lett. 111, Article ID 106636, 6 p. (2021; Zbl 1450.35110) Full Text: DOI
Zhao, Zhonglong; He, Lingchao \(M\)-lump and hybrid solutions of a generalized \((2+1)\)-dimensional Hirota-Satsuma-Ito equation. (English) Zbl 1450.35116 Appl. Math. Lett. 111, Article ID 106612, 8 p. (2021). MSC: 35C08 35C07 35G25 35Q35 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{L. He}, Appl. Math. Lett. 111, Article ID 106612, 8 p. (2021; Zbl 1450.35116) Full Text: DOI
Bramburger, Jason J. Exact minimum speed of traveling waves in a Keller-Segel model. (English) Zbl 1448.92035 Appl. Math. Lett. 111, Article ID 106594, 7 p. (2021). MSC: 92C17 35C07 PDF BibTeX XML Cite \textit{J. J. Bramburger}, Appl. Math. Lett. 111, Article ID 106594, 7 p. (2021; Zbl 1448.92035) Full Text: DOI
Abdelsalam, U. M. Exact solutions for coupled nonlinear partial differential equations using \(G'/G\) method. (English) Zbl 07246077 Electron. J. Math. Analysis Appl. 9, No. 1, 67-78 (2021). MSC: 35C07 35C08 35B10 35C09 PDF BibTeX XML Cite \textit{U. M. Abdelsalam}, Electron. J. Math. Analysis Appl. 9, No. 1, 67--78 (2021; Zbl 07246077) Full Text: Link
Issasfa, Asma; Lin, Ji Lump and mixed rogue-soliton solutions to the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation. (English) Zbl 07331929 J. Appl. Anal. Comput. 10, No. 1, 314-325 (2020). MSC: 35A25 35C07 PDF BibTeX XML Cite \textit{A. Issasfa} and \textit{J. Lin}, J. Appl. Anal. Comput. 10, No. 1, 314--325 (2020; Zbl 07331929) Full Text: DOI
Wang, Wei; Ma, Wanbiao; Feng, Zhaosheng Global dynamics and travelling waves for a periodic and diffusive chemostat model with two nutrients and one microorganism. (English) Zbl 07327539 Nonlinearity 33, No. 9, 4338-4380 (2020). MSC: 35C07 35B10 35K51 35K57 92C17 PDF BibTeX XML Cite \textit{W. Wang} et al., Nonlinearity 33, No. 9, 4338--4380 (2020; Zbl 07327539) Full Text: DOI
Cristófani, Fabrício; Natali, Fábio; Pastor, Ademir Periodic traveling-wave solutions for regularized dispersive equations: sufficient conditions for orbital stability with applications. (English) Zbl 07327463 Commun. Math. Sci. 18, No. 3, 613-634 (2020). MSC: 35C07 35B10 35B35 76B15 PDF BibTeX XML Cite \textit{F. Cristófani} et al., Commun. Math. Sci. 18, No. 3, 613--634 (2020; Zbl 07327463) Full Text: DOI
Wang, Yaji; Xu, Hang; Sun, Q. New groups of solutions to the Whitham-Broer-Kaup equation. (English) Zbl 07327147 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735-1746 (2020). MSC: 35Q86 86A15 35C07 35B32 PDF BibTeX XML Cite \textit{Y. Wang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735--1746 (2020; Zbl 07327147) Full Text: DOI
Feng, Wei; Freeze, Michael; Lu, Xin On competition models under Allee effect: asymptotic behavior and traveling waves. (English) Zbl 07326994 Commun. Pure Appl. Anal. 19, No. 12, 5609-5626 (2020). MSC: 35B35 35B40 35C07 35K45 35K57 35Q92 PDF BibTeX XML Cite \textit{W. Feng} et al., Commun. Pure Appl. Anal. 19, No. 12, 5609--5626 (2020; Zbl 07326994) Full Text: DOI
Volpert, Vitaly Some recent developments in the theory and applications of reaction-diffusion waves. (English) Zbl 07326948 Pure Appl. Funct. Anal. 5, No. 2, 473-487 (2020). MSC: 35-02 35C07 35K57 35B32 35B35 PDF BibTeX XML Cite \textit{V. Volpert}, Pure Appl. Funct. Anal. 5, No. 2, 473--487 (2020; Zbl 07326948) Full Text: Link
Cristófani, Fabrício; Pastor, Ademir Nonlinear stability of periodic-wave solutions for systems of dispersive equations. (English) Zbl 07326923 Commun. Pure Appl. Anal. 19, No. 10, 5015-5032 (2020). MSC: 35B35 35C07 35F50 35Q51 35Q53 PDF BibTeX XML Cite \textit{F. Cristófani} and \textit{A. Pastor}, Commun. Pure Appl. Anal. 19, No. 10, 5015--5032 (2020; Zbl 07326923) Full Text: DOI
Zafar, A.; Khalid, B.; Fahand, A.; Rezazadeh, H.; Bekir, A. Analytical behaviour of travelling wave solutions to the Van der Waals model. (English) Zbl 07322755 Int. J. Appl. Comput. Math. 6, No. 5, Paper No. 131, 16 p. (2020). MSC: 35C07 35C05 35Q35 PDF BibTeX XML Cite \textit{A. Zafar} et al., Int. J. Appl. Comput. Math. 6, No. 5, Paper No. 131, 16 p. (2020; Zbl 07322755) Full Text: DOI
Abobakr, Asmaa H.; Hussien, Hussien S.; Mansour, Mahmoud B. A. On wave patterns in a spatially extended Holling-Tanner model. (English) Zbl 07322717 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 93, 15 p. (2020). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{A. H. Abobakr} et al., Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 93, 15 p. (2020; Zbl 07322717) Full Text: DOI
Saulin, Sergeĭ Mikhaĭlovich On traveling waves in systems of absolutely elastic particles on a straight line. (Russian. English summary) Zbl 07319014 Chebyshevskiĭ Sb. 21, No. 2(74), 341-361 (2020). MSC: 37 PDF BibTeX XML Cite \textit{S. M. Saulin}, Chebyshevskiĭ Sb. 21, No. 2(74), 341--361 (2020; Zbl 07319014) Full Text: DOI MNR
Carillo, Sandra; Jordan, Pedro M. On the propagation of temperature-rate waves and traveling waves in rigid conductors of the Graffi-Franchi-Straughan type. (English) Zbl 07318065 Math. Comput. Simul. 176, 120-133 (2020). MSC: 35C 76B 35 35Q PDF BibTeX XML Cite \textit{S. Carillo} and \textit{P. M. Jordan}, Math. Comput. Simul. 176, 120--133 (2020; Zbl 07318065) Full Text: DOI
Benatar, Jacques; Marinucci, Domenico; Wigman, Igor Planck-scale distribution of nodal length of arithmetic random waves. (English) Zbl 07317802 J. Anal. Math. 141, No. 2, 707-749 (2020). MSC: 81Q10 35J05 35C07 81R60 47A48 81Q35 14M25 35P05 PDF BibTeX XML Cite \textit{J. Benatar} et al., J. Anal. Math. 141, No. 2, 707--749 (2020; Zbl 07317802) Full Text: DOI
Audiard, Corentin Existence of multi-travelling waves in capillary fluids. (English) Zbl 07316364 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 2905-2936 (2020). MSC: 35Q35 35C07 35Q53 35Q31 35B35 PDF BibTeX XML Cite \textit{C. Audiard}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 2905--2936 (2020; Zbl 07316364) Full Text: DOI
Trofimchuk, Elena; Pinto, Manuel; Trofimchuk, Sergei Existence and uniqueness of monotone wavefronts in a nonlocal resource-limited model. (English) Zbl 07316342 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2462-2483 (2020). MSC: 35C07 35K15 35K57 92D25 PDF BibTeX XML Cite \textit{E. Trofimchuk} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2462--2483 (2020; Zbl 07316342) Full Text: DOI
Corli, Andrea; Malaguti, Luisa Models of collective movements with negative degenerate diffusivities. (English) Zbl 07315485 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 393-399 (2020). MSC: 35K65 35C07 35K55 35K57 35M10 PDF BibTeX XML Cite \textit{A. Corli} and \textit{L. Malaguti}, AIMS Ser. Appl. Math. 10, 393--399 (2020; Zbl 07315485)
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 35Q53 35Q55 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Meng, Qing; He, Bin Bifurcation analysis and exact traveling wave solutions for a generic two-dimensional sine-Gordon equation in nonlinear optics. (English) Zbl 1455.34044 J. Appl. Anal. Comput. 10, No. 4, 1443-1463 (2020). MSC: 34C25 34C23 35C07 35L71 78A60 PDF BibTeX XML Cite \textit{Q. Meng} and \textit{B. He}, J. Appl. Anal. Comput. 10, No. 4, 1443--1463 (2020; Zbl 1455.34044) Full Text: DOI
Zhuang, Jinsen; Zhou, Yan Bifurcations and exact traveling wave solutions of the equivalent complex short-pulse equations. (English) Zbl 1455.35230 J. Appl. Anal. Comput. 10, No. 2, 795-815 (2020). MSC: 35Q53 35B32 35Q51 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{J. Zhuang} and \textit{Y. Zhou}, J. Appl. Anal. Comput. 10, No. 2, 795--815 (2020; Zbl 1455.35230) Full Text: DOI
Ionescu, Carmen; Constantinescu, Radu; Stoicescu, Mihail Functional expansions for finding traveling wave solutions. (English) Zbl 1455.35220 J. Appl. Anal. Comput. 10, No. 2, 569-583 (2020). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{C. Ionescu} et al., J. Appl. Anal. Comput. 10, No. 2, 569--583 (2020; Zbl 1455.35220) Full Text: DOI
Alharbi, Abdulghani R.; Almatrafi, M. B.; Seadawy, Aly R. Construction of the numerical and analytical wave solutions of the Joseph-Egri dynamical equation for the long waves in nonlinear dispersive systems. (English) Zbl 1454.35316 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050289, 10 p. (2020). MSC: 35Q53 35A25 35C08 35C07 PDF BibTeX XML Cite \textit{A. R. Alharbi} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050289, 10 p. (2020; Zbl 1454.35316) Full Text: DOI
Ali, I.; Seadawy, A. R.; Rizvi, S. T. R.; Younis, M.; Ali, K. Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. (English) Zbl 1454.35331 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020). MSC: 35Q55 78A60 35C07 35C08 PDF BibTeX XML Cite \textit{I. Ali} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020; Zbl 1454.35331) Full Text: DOI
Yokuş, Asıf; Kaya, Doğan Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics. (English) Zbl 1454.35329 Int. J. Mod. Phys. B 34, No. 29, Article ID 2050282, 22 p. (2020). MSC: 35Q53 35A22 35C07 65M06 PDF BibTeX XML Cite \textit{A. Yokuş} and \textit{D. Kaya}, Int. J. Mod. Phys. B 34, No. 29, Article ID 2050282, 22 p. (2020; Zbl 1454.35329) Full Text: DOI
Bekir, Ahmet; Zahran, Emad H. M. Painlevé approach and its applications to get new exact solutions of three biological models instead of its numerical solutions. (English) Zbl 1454.92005 Int. J. Mod. Phys. B 34, No. 29, Article ID 2050270, 17 p. (2020). MSC: 92C10 92D20 78A70 35C07 PDF BibTeX XML Cite \textit{A. Bekir} and \textit{E. H. M. Zahran}, Int. J. Mod. Phys. B 34, No. 29, Article ID 2050270, 17 p. (2020; Zbl 1454.92005) Full Text: DOI
Halder, Amlan K.; Leach, P. G. L.; Paliathanasis, A.; Sinuvasan, R. Cheng equation: a revisit through symmetry analysis. (English) Zbl 07311167 Quaest. Math. 43, No. 7, 857-867 (2020). MSC: 35B06 34A05 34A34 34C14 22E60 35C05 35C07 PDF BibTeX XML Cite \textit{A. K. Halder} et al., Quaest. Math. 43, No. 7, 857--867 (2020; Zbl 07311167) Full Text: DOI
Hung, Li-Chang; Liao, Xian Nonlinear estimates for traveling wave solutions of reaction diffusion equations. (English) Zbl 07309991 Japan J. Ind. Appl. Math. 37, No. 3, 819-830 (2020). MSC: 35B50 35B45 35C07 35K57 35K45 92D25 PDF BibTeX XML Cite \textit{L.-C. Hung} and \textit{X. Liao}, Japan J. Ind. Appl. Math. 37, No. 3, 819--830 (2020; Zbl 07309991) Full Text: DOI
Klamka, Jerzy; Avetisyan, Ara S.; Khurshudyan, Asatur Zh. Exact and approximate distributed controllability of processes described by KdV and Boussinesq equations: the Green’s function approach. (English) Zbl 07308271 Arch. Control Sci. 30, No. 1, 177-193 (2020). MSC: 93B05 93C20 35Q53 93C10 93C15 34B27 PDF BibTeX XML Cite \textit{J. Klamka} et al., Arch. Control Sci. 30, No. 1, 177--193 (2020; Zbl 07308271) Full Text: DOI
Chukkol, Yusuf Buba; Muminov, Mukhiddin Kink wave solutions to KdV-Burgers equation with forcing term. (English) Zbl 07308184 Commun. Korean Math. Soc. 35, No. 2, 685-695 (2020). MSC: 35Q53 35Q51 35L67 35L75 35C07 35C08 PDF BibTeX XML Cite \textit{Y. B. Chukkol} and \textit{M. Muminov}, Commun. Korean Math. Soc. 35, No. 2, 685--695 (2020; Zbl 07308184) Full Text: DOI
Berti, Diego; Corli, Andrea; Malaguti, Luisa Uniqueness and nonuniqueness of fronts for degenerate diffusion-convection reaction equations. (English) Zbl 07307879 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 66, 34 p. (2020). MSC: 35K65 35C07 34B40 35K57 PDF BibTeX XML Cite \textit{D. Berti} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 66, 34 p. (2020; Zbl 07307879) Full Text: DOI
Liu, Jia Traveling front of polyhedral shape for a nonlocal delayed diffusion equation. (English) Zbl 07307877 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 64, 13 p. (2020). MSC: 34K30 35C07 35K57 35B35 PDF BibTeX XML Cite \textit{J. Liu}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 64, 13 p. (2020; Zbl 07307877) Full Text: DOI
Valls, Claudia Algebraic traveling waves for the modified Korteweg-de Vries-Burgers equation. (English) Zbl 07307861 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 48, 16 p. (2020). MSC: 34A05 34C05 37C10 PDF BibTeX XML Cite \textit{C. Valls}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 48, 16 p. (2020; Zbl 07307861) Full Text: DOI
Alam, Md Nur; Tunc, Cemil Construction of soliton and multiple soliton solutions to the longitudinal wave motion equation in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation. (English) Zbl 07307821 Miskolc Math. Notes 21, No. 2, 545-561 (2020). MSC: 35C07 35C08 35Q53 PDF BibTeX XML Cite \textit{M. N. Alam} and \textit{C. Tunc}, Miskolc Math. Notes 21, No. 2, 545--561 (2020; Zbl 07307821) Full Text: DOI
Kalisch, Henrik; Teyekpiti, Vincent A shallow-water system with vanishing buoyancy. (English) Zbl 07304784 Appl. Anal. 99, No. 10, 1765-1779 (2020). MSC: 35L65 35L67 35L80 35Q35 35C07 PDF BibTeX XML Cite \textit{H. Kalisch} and \textit{V. Teyekpiti}, Appl. Anal. 99, No. 10, 1765--1779 (2020; Zbl 07304784) Full Text: DOI
Zhang, Guo-Bao Asymptotics and uniqueness of traveling wavefronts for a delayed model of the Belousov-Zhabotinsky reaction. (English) Zbl 07304779 Appl. Anal. 99, No. 10, 1639-1660 (2020). MSC: 34K10 34K12 35C07 35K57 PDF BibTeX XML Cite \textit{G.-B. Zhang}, Appl. Anal. 99, No. 10, 1639--1660 (2020; Zbl 07304779) Full Text: DOI
Yang, Huizhang; Liu, Wei; Zhao, Yunmei Lie symmetry analysis, traveling wave solutions, and conservation laws to the \((3+1)\)-dimensional generalized B-type Kadomtsev-Petviashvili equation. (English) Zbl 07303093 Complexity 2020, Article ID 3465860, 8 p. (2020). MSC: 35C07 35G25 35B06 PDF BibTeX XML Cite \textit{H. Yang} et al., Complexity 2020, Article ID 3465860, 8 p. (2020; Zbl 07303093) Full Text: DOI
Hamster, C. H. S.; Hupkes, H. J. Travelling waves for reaction-diffusion equations forced by translation invariant noise. (English) Zbl 1453.35202 Physica D 401, Article ID 132233, 35 p. (2020). MSC: 35R60 35K57 35B35 35C07 60H15 PDF BibTeX XML Cite \textit{C. H. S. Hamster} and \textit{H. J. Hupkes}, Physica D 401, Article ID 132233, 35 p. (2020; Zbl 1453.35202) Full Text: DOI