×

Analysis of two-dimensional transient conduction-radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method. (English) Zbl 1266.80005

This study deals with the performance evaluation of the lattice Boltzmann method (LBM) and the control volume finite element method (CVFEM) in terms of their abilities to provide accurate results in solving combined transient conduction and radiation mode problems in a two-dimensional rectangular enclosure containing an absorbing, emitting and anisotropically scattering medium. Coupling problems for mixed kind thermal boundary are worked out for reflective interfaces. Effects of various parameters are studied on the distributions of temperature, radiative and conductive heat fluxes. The results of the LBM in conjunction with the CVFEM are found to compare very well with available results in the literature. So, the numerical approach is extended to deal with a practical combination of mixed boundary conditions in a transient multi-dimensional combined conductive radiative heat transfer problems in an emitting, absorbing, anisotropically scattering enclosure.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
80M25 Other numerical methods (thermodynamics) (MSC2010)
76M28 Particle methods and lattice-gas methods
76M10 Finite element methods applied to problems in fluid mechanics
78A40 Waves and radiation in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yuen, W.; Takara, E., Analysis of combined conductive-radiative heat transfer in a two-dimensional rectangular enclosure with a gray medium, Trans. ASME J. Heat Transf., 110, 468 (1988)
[2] Kim, T. Y.; Baek, S. W., Analysis of combined conductive and radiative heat transfer in a two-dimensional rectangular enclosure using the discrete ordinates method, Int. J. Heat Mass Transf., 34, 2265 (1991)
[3] Lee, K. H.; Viskanta, R., Two-dimensional combined conduction and radiation heat transfer: comparison of the discrete ordinates method and the diffusion approximation methods, Numer. Heat Transf. A, 39, 205 (2001)
[4] Mishra, S. C.; Lankadasu, A.; Beronov, K. N., Application of the lattice Boltzmann method for solving the energy equation of a 2-D transient conduction-radiation problem, Int. J. Heat Mass Transf., 48, 3648 (2005) · Zbl 1189.80052
[5] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech., 30, 329 (1998) · Zbl 1398.76180
[6] He, X.; Chen, S.; Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 282 (1998) · Zbl 0919.76068
[7] Wolf-Gladrow, D. A., Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (2000), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 0999.82054
[8] Succi, S., The Lattice Boltzmann Method for Fluid Dynamics and Beyond (2001), Oxford University Press · Zbl 0990.76001
[9] Nourgaliev, R. R.; Dinh, T. N.; Theofanous, T. G.; Joseph, D., The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiphase Flow, 29, 117 (2003) · Zbl 1136.76594
[10] Shan, X., Simulation of Rayleigh Benard convection using a lattice Boltzmann method, Phys. Rev. E, 55, 2780 (1977)
[11] Mezrhab, A.; Bouzidi, M.; Lallemand, P., Hybrid lattice-Boltzmann finite-difference simulation of convective flows, Comput. Fluids, 33, 4, 623 (2005) · Zbl 1071.76044
[12] Ho, J. R.; Kuo, C. P.; Jiaung, W.-S.; Twu, C. J., Lattice Boltzmann scheme for hyperbolic heat conduction equation, Numer. Heat Transf. B, 41, 591 (2002)
[13] Mondal, B.; Mishra, S. C., Application of the lattice Boltzmann method and discrete ordinate method for solving transient conduction and radiation heat transfer problems, Numer. Heat Transf. A, 52, 8, 757 (2007)
[14] Mishra, S. C.; Lankadasu, A., Analysis of transient conduction and radiation heat transfer using the lattice Boltzmann method and the discrete transfer method, Numer. Heat Transf. A, 47, 935 (2005)
[15] Mishra, S. C.; Roy, K. H., Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method, J. Comput. Phys., 223, 89 (2007) · Zbl 1163.80304
[16] Rousse, D. R.; Gautier, G.; Sacadura, J. F., Numerical prediction of two-dimensional conduction, convection, and radiation heat transfer. II. Validation, Int. J. ThermSci., 39, 332 (2000)
[17] Grissa, H.; Askri, F.; Ben Salah, M.; Ben Nasrallah, S., Prediction of radiative heat transfer in 3D complex geometries using the unstructured control volume finite element method, J. Quant. Spectrosc. Radiat. Transf., 111, 144 (2010)
[18] Salah, M. B.; Askri, F.; Rousse, D.; Ben Nasrallah, S., Control volume finite element method for radiation, J. Quant. Spectrosc. Radiat. Transf., 92, 9 (2005)
[19] Grissa, H.; Askri, F.; Ben Salah, M.; Ben Nasrallah, S., Nonaxisymmetric radiative transfer in inhomogeneous cylindrical media with anisotropic scattering, J. Quant. Spectrosc. Radiat. Transf., 109, 494 (2008)
[20] Mishra, S. C.; Talukdar, P.; Trimis, D.; Durst, F., Computational efficiency improvements of the radiative transfer problems with or without conduction - a comparison of the collapsed dimension method and the discrete transfer method, Int. J. Heat Mass Transf., 46, 3083 (2003) · Zbl 1039.80505
[21] Kim, T. K.; Lee, H. S., Radiative heat transfer in two-dimensional anisotropic scattering media with collimated incidence, J. Quant. Spectrosc. Radiat. Transf., 42, 225 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.