×

Spike-train spectra and network response functions for nonlinear integrate-and-fire neurons. (English) Zbl 1161.92014

Summary: Reduced models have long been used as a tool for the analysis of the complex activity taking place in neurons and their coupled networks. Recent advances in experimental and theoretical techniques have further demonstrated the usefulness of this approach. Despite the often gross simplification of the underlying biophysical properties, reduced models can still present significant difficulties in their analysis, with the majority of exact and perturbative results available only for the leaky integrate-and-fire model.
Here an elementary numerical scheme is demonstrated which can be used to calculate a number of biologically important properties of a general class of nonlinear integrate-and-fire models. Exact results for the first-passage-time density and spike-train spectrum are derived, as well as the linear response properties and emergent states of recurrent networks. Given that the exponential integrate-fire model has recently been shown to agree closely with the experimentally measured response of pyramidal cells, the methodology presented here promises to provide a convenient tool to facilitate the analysis of cortical-network dynamics.

MSC:

92C20 Neural biology
92C05 Biophysics
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arsiero M, Lüscher H-R, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27: 3274–3284 · doi:10.1523/JNEUROSCI.4937-06.2007
[2] Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W, Richardson MJE (2008) Dynamic I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99: 656–666 · doi:10.1152/jn.01107.2007
[3] Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11: 1621–1671 · doi:10.1162/089976699300016179
[4] Brunel N, Wang X-J (2003) What determines the frequency of fast network oscillations with irregular neural discharges?. J Neurophysiol 90: 415–430 · doi:10.1152/jn.01095.2002
[5] Brunel N, Latham P (2003) Firing rate of noisy quadratic integrate- and-fire neurons. Neural Comput 15: 2281–2306 · Zbl 1085.68617 · doi:10.1162/089976603322362365
[6] Brunel N, Hakim V, Richardson MJE (2003) Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67:art-no 051916
[7] Burkitt AN (2006a) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95: 1–19 · Zbl 1161.92315 · doi:10.1007/s00422-006-0068-6
[8] Burkitt AN (2006b) A review of the integrate-and-fire neuron model: II Inhomogeneous synaptic input and network properties. Biol Cybern 95: 97–112 · Zbl 1161.92314 · doi:10.1007/s00422-006-0082-8
[9] Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46: 233–253 · Zbl 0594.58033 · doi:10.1137/0146017
[10] Fourcaud-Trocmé N, Hansel D, van Vresswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23: 11628–11640
[11] Fourcaud-Trocmé N, Brunel N (2005) Dynamics of the instantaneous firing rate in response to changes in input statistics. J Comput Neurosci 18: 311–321 · Zbl 02224961 · doi:10.1007/s10827-005-0337-8
[12] Fuhrmann G, Markram H, Tsodyks M (2002) Spike frequency adaptation and neocortical rhythms. J Neurophys 88: 761–770
[13] Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, Cambridge · Zbl 1100.92501
[14] Gigante G, Mattia M, Del Giudice P (2007) Diverse population-bursting modes of adapting spiking neurons. Phys Rev Lett 98:art-no 148101 · Zbl 1117.92005
[15] Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544
[16] Hohn N, Burkitt AN (2001) Shot noise in the leaky integrate-and-fire neuron. Phys Rev E 63:art-no 031902
[17] Johannesma PIM (1968) In: Caianiello ER (ed) Neural networks. Springer, New York, pp 116–44
[18] Jolivet A, Rauch A, Lüscher H-R, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21: 35–49 · Zbl 1118.92013 · doi:10.1007/s10827-006-7074-5
[19] Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Meth 169: 417–424 · doi:10.1016/j.jneumeth.2007.11.006
[20] Knight BW (1972a) Dynamics of encoding in a population of neurons. J Gen Physiol 59: 734–766 · doi:10.1085/jgp.59.6.734
[21] Knight BW (1972b) The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. J Gen Physiol 59: 767–778 · doi:10.1085/jgp.59.6.767
[22] Köndgen H, Geisler C, Fusi S, Wang X-J, Lüscher H-R, Giugliano M (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cerebr Cortex. doi: 10.1093/cercor/bhm235
[23] Lansky P, Lanska V (1987) Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol Cybern 56: 19–26 · Zbl 0618.92005 · doi:10.1007/BF00333064
[24] Lindner B, Schimansky-Geier L (2001) Transmission of noise coded versus additive signals through a neuronal ensemble. Phys Rev Lett 86: 2934–2937 · doi:10.1103/PhysRevLett.86.2934
[25] Lindner B, Schimansky-Geier L, Longtin A (2002) Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys Rev E 66:art-no 031916
[26] Lindner B, Longtin A, Bulsara A (2003) Analytic expressions for rate and CV of a type I Neuron driven by white Gaussian noise. Neural Comput 15: 1761–1788 · Zbl 1085.68638 · doi:10.1162/08997660360675035
[27] Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Phys Rep 392: 321–424 · doi:10.1016/j.physrep.2003.10.015
[28] Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16: 2533–2561 · Zbl 1180.62179 · doi:10.1162/0899766042321797
[29] Rauch A, La Camera G, Luscher H-R, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo like input currents. J Neurophys 90: 1598–1612 · doi:10.1152/jn.00293.2003
[30] Ricciardi LM (1977) Diffusion processes and related topics in biology. Springer, Berlin · Zbl 0356.60023
[31] Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89: 2538–2554 · doi:10.1152/jn.00955.2002
[32] Richardson MJE (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E 69:art-no 051918
[33] Richardson MJE, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17: 923–947 · Zbl 1076.92014 · doi:10.1162/0899766053429444
[34] Richardson MJE, Gerstner W (2006) Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise. Chaos 16:art-no 026106 · Zbl 1152.92309
[35] Richardson MJE (2007) Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Phys Rev E 76:article-no 021919
[36] Risken H (1996) The Fokker–Planck equation. Springer, Berlin · Zbl 0866.60071
[37] Silberberg G, Bethge M, Markram H, Pawelzik K, Tsodyks M (2004) Dynamics of population rate codes in ensembles of neocortical neurons. J Neurophysiol 91: 704–709 · doi:10.1152/jn.00415.2003
[38] Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5: 173–194 · doi:10.1016/S0006-3495(65)86709-1
[39] DeWeese MR, Zador AM (2006) Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J Neurosci 26: 12206–12218 · doi:10.1523/JNEUROSCI.2813-06.2006
[40] Wolff L, Lindner B (2008) Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise. Phys Rev E 77:article-no 041913
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.