×

Exact formulas for the variance of several balance indices under the Yule model. (English) Zbl 1281.92051

Summary: One of the main applications of balance indices is in tests of null models of evolutionary processes. The knowledge of an exact formula for a statistic of a balance index, holding for any number \(n\) of leaves, is necessary in order to use this statistic in tests of this kind involving trees of any size. In this paper we obtain exact formulas for the variance under the Yule model of the Sackin, the Colless and the total cophenetic indices of binary rooted phylogenetic trees with \(n\) leaves.

MSC:

92D15 Problems related to evolution
92B10 Taxonomy, cladistics, statistics in mathematical biology
60J85 Applications of branching processes
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Blum MGB, François O (2006) Which random processes describe the Tree of Life? A large-scale study of phylogenetic tree imbalance. Sys Biol 55:685-691 · doi:10.1080/10635150600889625
[2] Blum MGB, François O, Janson S (2006) The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance. Ann Appl Probab 16:2195-2214 · Zbl 1124.05025 · doi:10.1214/105051606000000547
[3] Brown J (1994) Probabilities of evolutionary trees. Syst Biol 43:78-91
[4] Cavalli-Sforza LL, Edwards A (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233-257
[5] Colless DH (1982) Review of “Phylogenetics: the theory and practice of phylogenetic systematics”. Sys Zool 31:100-104 · doi:10.2307/2413420
[6] Felsenstein J (2004) InferringpPhylogenies. Sinauer Associates Inc., Sunderland
[7] Harding E (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl Prob 3:44-77 · Zbl 0241.92012 · doi:10.2307/1426329
[8] Heard SB (1992) Patterns in tree balance among cladistic, phenetic, and randomly generated phylogenetic trees. Evolution 46:1818-1826 · doi:10.2307/2410033
[9] Kirkpatrick M, Slatkin M (1993) Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution 47:1171-1181 · doi:10.2307/2409983
[10] Matsen F (2007) Optimization over a class of tree shape statistics. IEEE/ACM Trans Comput Biol Bioinforma 4:506-512 · doi:10.1109/tcbb.2007.1020
[11] Mir A, Rosselló F, Rotger L (2012) A new balance index for phylogenetic trees. Math Biosc. arXiv:1202.1223v1 [q-bio.PE] · Zbl 1303.92084
[12] Mooers A, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Quart Rev Biol 72:31-54 · doi:10.1086/419657
[13] Ruschendorf L, Neininger R (2006) Survey of multivariate aspects of the contraction method. Discrete Math Theor Comput Sci 8:31-56 · Zbl 1157.60307
[14] Rogers JS (1994) Central moments and probability distribution of Colless’s coefficient of tree imbalance. Evolution 48:2026-2036 · doi:10.2307/2410524
[15] Rogers JS (1996) Central moments and probability distributions of three measures of phylogenetic tree imbalance. Sys Biol 45:99-110 · doi:10.1093/sysbio/45.1.99
[16] Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Syst Biol 27:159-188
[17] Sackin MJ (1972) “Good” and “bad” phenograms. Sys Zool 21:225-226 · doi:10.2307/2412292
[18] Shao KT, Sokal R (1990) Tree balance. Sys Zool 39:226-276 · doi:10.2307/2992186
[19] Sokal R, Rohlf F (1962) The comparison of dendrograms by objective methods. Taxon 11:33-40 · doi:10.2307/1217208
[20] Steel M, McKenzie A (2000) Distributions of cherries for two models of trees. Math Biosc 164:81-92 · Zbl 0947.92021 · doi:10.1016/S0025-5564(99)00060-7
[21] Steel M, McKenzie A (2001) Properties of phylogenetic trees generated by Yule-type speciation models. Math Biosc 170:91-112 · Zbl 0977.92017 · doi:10.1016/S0025-5564(00)00061-4
[22] Yule GU (1924) A mathematical theory of evolution based on the conclusions of Dr J. C. Willis. Phil Trans Royal Soc (Lond) Ser B 213:21-87 · doi:10.1098/rstb.1925.0002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.