Kolesnikov, N. S.; Novoselov, S. A. On the distribution of orders of Frobenius action on \(\ell \)-torsion of abelian surfaces. (English) Zbl 07312013 Prikl. Diskretn. Mat. 2020, No. 48, 22-33 (2020). MSC: 11G10 11G25 14H52 14Q05 PDF BibTeX XML Cite \textit{N. S. Kolesnikov} and \textit{S. A. Novoselov}, Prikl. Diskretn. Mat. 2020, No. 48, 22--33 (2020; Zbl 07312013) Full Text: DOI MNR
González-Jiménez, Enrique Torsion growth over cubic fields of rational elliptic curves with complex multiplication. (English) Zbl 07301124 Publ. Math. 97, No. 1-2, 63-76 (2020). Reviewer: G. K. Sankaran (Bath) MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{E. González-Jiménez}, Publ. Math. 97, No. 1--2, 63--76 (2020; Zbl 07301124) Full Text: DOI
Berger, Lisa; Hall, Chris; Pannekoek, René; Park, Jennifer; Pries, Rachel; Sharif, Shahed; Silverberg, Alice; Ulmer, Douglas Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields. (English) Zbl 07242226 Memoirs of the American Mathematical Society 1295. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4219-4/pbk; 978-1-4704-6253-6/ebook). v, 131 p. (2020). MSC: 11-02 11G05 11G40 11G30 14H05 PDF BibTeX XML Cite \textit{L. Berger} et al., Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 07242226) Full Text: DOI
Jeon, Daeyeol; Schweizer, Andreas Torsion of rational elliptic curves over different types of cubic fields. (English) Zbl 07219272 Int. J. Number Theory 16, No. 6, 1307-1323 (2020). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} and \textit{A. Schweizer}, Int. J. Number Theory 16, No. 6, 1307--1323 (2020; Zbl 07219272) Full Text: DOI
DeMarco, Laura; Krieger, Holly; Ye, Hexi Uniform Manin-Mumford for a family of genus 2 curves. (English) Zbl 1452.14027 Ann. Math. (2) 191, No. 3, 949-1001 (2020). Reviewer: Michel Waldschmidt (Paris) MSC: 14H40 11G50 37P50 37F44 PDF BibTeX XML Cite \textit{L. DeMarco} et al., Ann. Math. (2) 191, No. 3, 949--1001 (2020; Zbl 1452.14027) Full Text: DOI
Bourdon, Abbey; Clark, Pete L. Torsion points and Galois representations on CM elliptic curves. (English) Zbl 07180891 Pac. J. Math. 305, No. 1, 43-88 (2020). MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{A. Bourdon} and \textit{P. L. Clark}, Pac. J. Math. 305, No. 1, 43--88 (2020; Zbl 07180891) Full Text: DOI
Wang, Jian On the cyclic torsion of elliptic curves over cubic number fields. II. (English. French summary) Zbl 07246533 J. Théor. Nombres Bordx. 31, No. 3, 663-670 (2019). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{J. Wang}, J. Théor. Nombres Bordx. 31, No. 3, 663--670 (2019; Zbl 07246533) Full Text: DOI
Holmes, David Torsion points and height jumping in higher-dimensional families of abelian varieties. (English) Zbl 1428.14041 Int. J. Number Theory 15, No. 9, 1801-1826 (2019). Reviewer: WonTae Hwang (Seoul) MSC: 14G40 11G05 14K05 14H10 11G50 11G30 PDF BibTeX XML Cite \textit{D. Holmes}, Int. J. Number Theory 15, No. 9, 1801--1826 (2019; Zbl 1428.14041) Full Text: DOI
Dey, Pallab Kanti Torsion groups of a family of elliptic curves over number fields. (English) Zbl 07088776 Czech. Math. J. 69, No. 1, 161-171 (2019). MSC: 14H52 11R04 PDF BibTeX XML Cite \textit{P. K. Dey}, Czech. Math. J. 69, No. 1, 161--171 (2019; Zbl 07088776) Full Text: DOI
Daniels, Harris B.; Derickx, Maarten; Hatley, Jeffrey Groups of generalized \(G\)-type and applications to torsion subgroups of rational elliptic curves over infinite extensions of \(\mathbb{Q}\). (English) Zbl 1422.14037 Trans. Lond. Math. Soc. 6, No. 1, 22-52 (2019). Reviewer: Andrea Bandini (Pisa) MSC: 14H52 11G05 11R21 PDF BibTeX XML Cite \textit{H. B. Daniels} et al., Trans. Lond. Math. Soc. 6, No. 1, 22--52 (2019; Zbl 1422.14037) Full Text: DOI
Gassert, T. Alden; Smith, Hanson; Stange, Katherine E. A family of monogenic \(S_4\) quartic fields arising from elliptic curves. (English) Zbl 1410.11050 J. Number Theory 197, 361-382 (2019). Reviewer: Noburo Ishii (Kyoto) MSC: 11G05 11R04 11R16 PDF BibTeX XML Cite \textit{T. A. Gassert} et al., J. Number Theory 197, 361--382 (2019; Zbl 1410.11050) Full Text: DOI arXiv
Malinin, Dmitry On some integral representations of groups and global irreducibility. (English) Zbl 1446.20014 Int. J. Group Theory 7, No. 3, 81-94 (2018). MSC: 20C10 11R33 20G30 20C15 PDF BibTeX XML Cite \textit{D. Malinin}, Int. J. Group Theory 7, No. 3, 81--94 (2018; Zbl 1446.20014) Full Text: DOI
Fedorov, Gleb Vladimirovich Periodic continued fractions and \(S\)-units with second degree valuations in hyperelliptic fields. (Russian. English summary) Zbl 1434.11130 Chebyshevskiĭ Sb. 19, No. 3(67), 282-297 (2018). MSC: 11J70 11G16 PDF BibTeX XML Cite \textit{G. V. Fedorov}, Chebyshevskiĭ Sb. 19, No. 3(67), 282--297 (2018; Zbl 1434.11130) Full Text: DOI MNR
Paladino, Laura On 5-torsion of CM elliptic curves. (English) Zbl 1439.11138 Riv. Mat. Univ. Parma (N.S.) 9, No. 2, 329-350 (2018). MSC: 11G05 11F80 11G18 PDF BibTeX XML Cite \textit{L. Paladino}, Riv. Mat. Univ. Parma (N.S.) 9, No. 2, 329--350 (2018; Zbl 1439.11138) Full Text: arXiv
Sarma, Naba Kanta; Saikia, Anupam Torsion of elliptic curves over imaginary quadratic fields of class number 1. (English) Zbl 1429.11109 Rocky Mt. J. Math. 48, No. 8, 2689-2703 (2018). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{N. K. Sarma} and \textit{A. Saikia}, Rocky Mt. J. Math. 48, No. 8, 2689--2703 (2018; Zbl 1429.11109) Full Text: DOI Euclid
Los, Johan; Mepschen, Tiemar; Top, Jaap Rational Poncelet. (English) Zbl 1440.11096 Int. J. Number Theory 14, No. 10, 2641-2655 (2018). MSC: 11G05 14H52 51N35 PDF BibTeX XML Cite \textit{J. Los} et al., Int. J. Number Theory 14, No. 10, 2641--2655 (2018; Zbl 1440.11096) Full Text: DOI
Clark, Pete L.; Milosevic, Marko; Pollack, Paul Typically bounding torsion. (English) Zbl 06943091 J. Number Theory 192, 150-167 (2018). MSC: 11G15 11G05 PDF BibTeX XML Cite \textit{P. L. Clark} et al., J. Number Theory 192, 150--167 (2018; Zbl 06943091) Full Text: DOI arXiv
McDonald, Robert J. S. Torsion subgroups of elliptic curves over function fields of genus 0. (English) Zbl 1429.11106 J. Number Theory 193, 395-423 (2018). MSC: 11G05 11R58 PDF BibTeX XML Cite \textit{R. J. S. McDonald}, J. Number Theory 193, 395--423 (2018; Zbl 1429.11106) Full Text: DOI
Kamienny, Sheldon; Newman, Burton Points of order 13 on elliptic curves. (English) Zbl 1440.11095 Funct. Approximatio, Comment. Math. 58, No. 1, 121-129 (2018). MSC: 11G05 11G10 11G18 PDF BibTeX XML Cite \textit{S. Kamienny} and \textit{B. Newman}, Funct. Approximatio, Comment. Math. 58, No. 1, 121--129 (2018; Zbl 1440.11095) Full Text: DOI Euclid arXiv
Corvaja, Pietro; Masser, David; Zannier, Umberto Torsion hypersurfaces on abelian schemes and Betti coordinates. (English) Zbl 1412.14029 Math. Ann. 371, No. 3-4, 1013-1045 (2018). Reviewer: Paul Vojta (Berkeley) MSC: 14K05 11G05 14G05 14K12 PDF BibTeX XML Cite \textit{P. Corvaja} et al., Math. Ann. 371, No. 3--4, 1013--1045 (2018; Zbl 1412.14029) Full Text: DOI
Bogomolov, Fedor A.; Fu, Hang Elliptic curves with large intersection of projective torsion points. (English) Zbl 1395.14027 Eur. J. Math. 4, No. 2, 555-560 (2018). Reviewer: Andrea Bandini (Parma) MSC: 14H52 14Q05 PDF BibTeX XML Cite \textit{F. A. Bogomolov} and \textit{H. Fu}, Eur. J. Math. 4, No. 2, 555--560 (2018; Zbl 1395.14027) Full Text: DOI
Ivanics, Péter; Stipsicz, András; Szabó, Szilárd Two-dimensional moduli spaces of rank 2 Higgs bundles over \(\mathbb{C} \mathbb P^1\) with one irregular singular point. (English) Zbl 1400.14093 J. Geom. Phys. 130, 184-212 (2018). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H70 14D20 PDF BibTeX XML Cite \textit{P. Ivanics} et al., J. Geom. Phys. 130, 184--212 (2018; Zbl 1400.14093) Full Text: DOI
Izadi, Farzali; Rasool, Naghdali Forooshani; Amaneh, Amiryousefi Varnousfaderani Fourth power Diophantine equations in Gaussian integers. (English) Zbl 1391.11066 Proc. Indian Acad. Sci., Math. Sci. 128, No. 2, Paper No. 18, 6 p. (2018). MSC: 11D45 11D25 11G05 PDF BibTeX XML Cite \textit{F. Izadi} et al., Proc. Indian Acad. Sci., Math. Sci. 128, No. 2, Paper No. 18, 6 p. (2018; Zbl 1391.11066) Full Text: DOI
Derickx, Maarten; Mazur, Barry; Kamienny, Sheldon Rational families of \(17\)-torsion points of elliptic curves over number fields. (English) Zbl 1440.11092 Lario, Joan-Carles (ed.) et al., Number theory related to modular curves: Momose memorial volume. Proceedings of the Barcelona-Boston-Tokyo Number Theory Seminar in memory of Fumiyuki Momose, Barcelona, Spain, May 21–23, 2012. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 701, 81-104 (2018). MSC: 11G05 11G18 14G35 14H51 PDF BibTeX XML Cite \textit{M. Derickx} et al., Contemp. Math. 701, 81--104 (2018; Zbl 1440.11092) Full Text: DOI
Wang, Jian On the cyclic torsion of elliptic curves over cubic number fields. (English) Zbl 1433.11077 J. Number Theory 183, 291-308 (2018). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{J. Wang}, J. Number Theory 183, 291--308 (2018; Zbl 1433.11077) Full Text: DOI
McNew, Nathan; Pollack, Paul; Pomerance, Carl Numbers divisible by a large shifted prime and large torsion subgroups of CM elliptic curves. (English) Zbl 1405.11123 Int. Math. Res. Not. 2017, No. 18, 5525-5553 (2017). MSC: 11N25 11G05 PDF BibTeX XML Cite \textit{N. McNew} et al., Int. Math. Res. Not. 2017, No. 18, 5525--5553 (2017; Zbl 1405.11123) Full Text: DOI
Bourdon, Abbey; Pollack, Paul Torsion subgroups of CM elliptic curves over odd degree number fields. (English) Zbl 1405.11072 Int. Math. Res. Not. 2017, No. 16, 4923-4961 (2017). MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{A. Bourdon} and \textit{P. Pollack}, Int. Math. Res. Not. 2017, No. 16, 4923--4961 (2017; Zbl 1405.11072) Full Text: DOI arXiv
Clark, Pete L.; Pollack, Paul The truth about torsion in the CM case. II. (English) Zbl 1405.11074 Q. J. Math. 68, No. 4, 1313-1333 (2017). MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{P. L. Clark} and \textit{P. Pollack}, Q. J. Math. 68, No. 4, 1313--1333 (2017; Zbl 1405.11074) Full Text: DOI arXiv
Stoll, Michael Simultaneous torsion in the Legendre family. (English) Zbl 1386.14122 Exp. Math. 26, No. 4, 446-459 (2017). Reviewer: Andrea Bandini (Parma) MSC: 14H52 14Q05 11G05 PDF BibTeX XML Cite \textit{M. Stoll}, Exp. Math. 26, No. 4, 446--459 (2017; Zbl 1386.14122) Full Text: DOI
Bourdon, Abbey; Clark, Pete L.; Stankewicz, James Torsion points on CM elliptic curves over real number fields. (English) Zbl 1382.11040 Trans. Am. Math. Soc. 369, No. 12, 8457-8496 (2017). Reviewer: Noburo Ishii (Kyoto) MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{A. Bourdon} et al., Trans. Am. Math. Soc. 369, No. 12, 8457--8496 (2017; Zbl 1382.11040) Full Text: DOI arXiv
Bourdon, Abbey; Clark, Pete L.; Pollack, Paul Anatomy of torsion in the CM case. (English) Zbl 1422.11139 Math. Z. 285, No. 3-4, 795-820 (2017). MSC: 11G15 11G05 11N25 11N37 PDF BibTeX XML Cite \textit{A. Bourdon} et al., Math. Z. 285, No. 3--4, 795--820 (2017; Zbl 1422.11139) Full Text: DOI arXiv
Mavraki, Niki Myrto Impossible intersections in a Weierstrass family of elliptic curves. (English) Zbl 1409.11047 J. Number Theory 169, 21-40 (2016). MSC: 11G07 37F10 PDF BibTeX XML Cite \textit{N. M. Mavraki}, J. Number Theory 169, 21--40 (2016; Zbl 1409.11047) Full Text: DOI arXiv
Najman, Filip Torsion of rational elliptic curves over cubic fields and sporadic points on \(X_1(n)\). (English) Zbl 1416.11084 Math. Res. Lett. 23, No. 1, 245-272 (2016). MSC: 11G05 11G18 11G25 PDF BibTeX XML Cite \textit{F. Najman}, Math. Res. Lett. 23, No. 1, 245--272 (2016; Zbl 1416.11084) Full Text: DOI arXiv
Hindry, Marc; Pacheco, Amílcar An analogue of the Brauer-Siegel theorem for abelian varieties in positive characteristic. (English) Zbl 1382.11041 Mosc. Math. J. 16, No. 1, 45-93 (2016). MSC: 11G05 14K15 14G10 14G25 11G40 11G50 PDF BibTeX XML Cite \textit{M. Hindry} and \textit{A. Pacheco}, Mosc. Math. J. 16, No. 1, 45--93 (2016; Zbl 1382.11041) Full Text: Link
González-Jiménez, Enrique; Tornero, José M. Torsion of rational elliptic curves over quadratic fields. II. (English) Zbl 1366.11080 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 110, No. 1, 121-143 (2016). MSC: 11G05 11G30 14G05 PDF BibTeX XML Cite \textit{E. González-Jiménez} and \textit{J. M. Tornero}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 110, No. 1, 121--143 (2016; Zbl 1366.11080) Full Text: DOI arXiv
Jeon, Daeyeol Families of elliptic curves over cyclic cubic number fields with prescribed torsion. (English) Zbl 1354.11044 Math. Comput. 85, No. 299, 1485-1502 (2016). Reviewer: Shabnam Akhtari (Eugene) MSC: 11G05 11G18 14H37 PDF BibTeX XML Cite \textit{D. Jeon}, Math. Comput. 85, No. 299, 1485--1502 (2016; Zbl 1354.11044) Full Text: DOI
Platonov, V. P.; Petrunin, M. M. Fundamental \(S\)-units in hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves. (English. Russian original) Zbl 1348.14083 Dokl. Math. 92, No. 3, 667-669 (2015); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 465, No. 1, 23-25 (2015). Reviewer: Bouchaïb Sodaïgui (Valenciennes) MSC: 14H40 14G20 11G30 11G05 PDF BibTeX XML Cite \textit{V. P. Platonov} and \textit{M. M. Petrunin}, Dokl. Math. 92, No. 3, 667--669 (2015; Zbl 1348.14083); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 465, No. 1, 23--25 (2015) Full Text: DOI
Yasuda, Masaya Ramification of the Kummer extension generated from torsion points of elliptic curves. (English) Zbl 1327.14157 Int. J. Number Theory 11, No. 6, 1725-1734 (2015). Reviewer: Andrea Bandini (Parma) MSC: 14H52 14G05 PDF BibTeX XML Cite \textit{M. Yasuda}, Int. J. Number Theory 11, No. 6, 1725--1734 (2015; Zbl 1327.14157) Full Text: DOI
Platonov, V. P.; Petrunin, M. M. New curves of genus 2 over the field of rational numbers whose Jacobians contain torsion points of high order. (English. Russian original) Zbl 1356.11038 Dokl. Math. 91, No. 2, 220-221 (2015); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 461, No. 6, 638-639 (2015). MSC: 11G30 14H45 PDF BibTeX XML Cite \textit{V. P. Platonov} and \textit{M. M. Petrunin}, Dokl. Math. 91, No. 2, 220--221 (2015; Zbl 1356.11038); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 461, No. 6, 638--639 (2015) Full Text: DOI
Clark, Pete L.; Pollack, Paul The truth about torsion in the CM case. (La vérité sur la torsion dans le cas CM.) (English. French summary) Zbl 1333.11051 C. R., Math., Acad. Sci. Paris 353, No. 8, 683-688 (2015). Reviewer: Jordi Guárdia (Vilanova i la Geltrú) MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{P. L. Clark} and \textit{P. Pollack}, C. R., Math., Acad. Sci. Paris 353, No. 8, 683--688 (2015; Zbl 1333.11051) Full Text: DOI arXiv
Sadek, Mohammad; El-Sissi, Nermine Partitions with equal products and elliptic curves. (English) Zbl 1317.14072 Osaka J. Math. 52, No. 2, 515-525 (2015). Reviewer: Andrea Bandini (Parma) MSC: 14H52 11P81 PDF BibTeX XML Cite \textit{M. Sadek} and \textit{N. El-Sissi}, Osaka J. Math. 52, No. 2, 515--525 (2015; Zbl 1317.14072) Full Text: Euclid arXiv
Rogalski, D.; Sierra, S. J.; Stafford, J. T. Noncommutative blowups of elliptic algebras. (English) Zbl 1331.14004 Algebr. Represent. Theory 18, No. 2, 491-529 (2015). Reviewer: Arvid Siqveland (Kongsberg) MSC: 14A22 14H52 16E65 16P40 16S38 16W50 18E15 PDF BibTeX XML Cite \textit{D. Rogalski} et al., Algebr. Represent. Theory 18, No. 2, 491--529 (2015; Zbl 1331.14004) Full Text: DOI arXiv
Najman, Filip On the number of elliptic curves with prescribed isogeny or torsion group over number fields of prime degree. (English) Zbl 1322.11058 Glasg. Math. J. 57, No. 2, 465-473 (2015). Reviewer: Andrej Dujella (Zagreb) MSC: 11G05 11G18 14H52 PDF BibTeX XML Cite \textit{F. Najman}, Glasg. Math. J. 57, No. 2, 465--473 (2015; Zbl 1322.11058) Full Text: DOI arXiv
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Families of elliptic curves with prescribed torsion subgroups over dihedral quartic fields. (English) Zbl 1394.11046 J. Number Theory 147, 342-363 (2015). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., J. Number Theory 147, 342--363 (2015; Zbl 1394.11046) Full Text: DOI
Huang, Hsiu-Lien The average number of torsion points on elliptic curves. (English) Zbl 1373.11047 J. Number Theory 135, 374-389 (2014). MSC: 11G05 11N45 11G15 PDF BibTeX XML Cite \textit{H.-L. Huang}, J. Number Theory 135, 374--389 (2014; Zbl 1373.11047) Full Text: DOI
Izadi, Farzali; Khoshnam, Foad On elliptic curves via heron triangles and Diophantine triples. (English) Zbl 1314.14057 J. Math. Ext. 8, No. 3, 17-26 (2014). Reviewer: Andrea Bandini (Parma) MSC: 14H52 11G05 PDF BibTeX XML Cite \textit{F. Izadi} and \textit{F. Khoshnam}, J. Math. Ext. 8, No. 3, 17--26 (2014; Zbl 1314.14057)
Masser, D.; Zannier, U. Torsion points on families of products of elliptic curves. (English) Zbl 1318.11075 Adv. Math. 259, 116-133 (2014). Reviewer: Sebastian Petersen (Kassel) MSC: 11G05 11G50 14J20 14K05 PDF BibTeX XML Cite \textit{D. Masser} and \textit{U. Zannier}, Adv. Math. 259, 116--133 (2014; Zbl 1318.11075) Full Text: DOI
Jędrzejak, Tomasz; Ulas, Maciej Variations on twists of tuples of hyperelliptic curves and related results. (English) Zbl 1284.11091 J. Number Theory 137, 222-240 (2014). Reviewer: Michael Th. Rassias (Zürich) MSC: 11G05 PDF BibTeX XML Cite \textit{T. Jędrzejak} and \textit{M. Ulas}, J. Number Theory 137, 222--240 (2014; Zbl 1284.11091) Full Text: DOI arXiv
Barbulescu, Razvan; Bos, Joppe W.; Bouvier, Cyril; Kleinjung, Thorsten; Montgomery, Peter L. Finding ECM-friendly curves through a study of Galois properties. (English) Zbl 1344.11043 Howe, Everett W. (ed.) et al., ANTS X. Proceedings of the tenth algorithmic number theory symposium, San Diego, CA, USA, July 9–13, 2012. Berkeley, CA: Mathematical Sciences Publishers (MSP) (ISBN 978-1-935107-00-2/hbk; 978-1-935107-01-9/ebook). The Open Book Series 1, 63-86 (2013). MSC: 11G05 11Y11 11G15 PDF BibTeX XML Cite \textit{R. Barbulescu} et al., Open Book Ser. 1, 63--86 (2013; Zbl 1344.11043)
Anema, Ane S. I.; Top, Jaap Explicit algebraic coverings of a pointed torus. (English) Zbl 1302.14019 Laza, Radu (ed.) et al., Arithmetic and geometry of \(K3\) surfaces and Calabi-Yau threefolds. Proceedings of the workshop, Toronto, Canada, August 16–25, 2011. New York, NY: Springer (ISBN 978-1-4614-6402-0/hbk; 978-1-4614-6403-7/ebook). Fields Institute Communications 67, 143-152 (2013). MSC: 14H30 11G05 14J27 57M12 PDF BibTeX XML Cite \textit{A. S. I. Anema} and \textit{J. Top}, Fields Inst. Commun. 67, 143--152 (2013; Zbl 1302.14019) Full Text: DOI
Agashe, Amod Conjectures concerning the orders of the torsion subgroup, the arithmetic component groups, and the cuspidal subgroup. (English) Zbl 1288.11058 Exp. Math. 22, No. 4, 363-366 (2013). MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{A. Agashe}, Exp. Math. 22, No. 4, 363--366 (2013; Zbl 1288.11058) Full Text: DOI arXiv
Yasuda, Masaya Kummer generators and torsion points of elliptic curves with bad reduction at some primes. (English) Zbl 1281.14027 Int. J. Number Theory 9, No. 7, 1743-1752 (2013). Reviewer: Alain Kraus (Paris) MSC: 14H52 14G05 PDF BibTeX XML Cite \textit{M. Yasuda}, Int. J. Number Theory 9, No. 7, 1743--1752 (2013; Zbl 1281.14027) Full Text: DOI
Habegger, Philipp Torsion points on elliptic curves in Weierstrass form. (English) Zbl 1281.14026 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 12, No. 3, 687-715 (2013). Reviewer: Fumio Hazama (Hatoyama) MSC: 14H52 11G40 11G05 11U09 PDF BibTeX XML Cite \textit{P. Habegger}, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 12, No. 3, 687--715 (2013; Zbl 1281.14026) Full Text: DOI arXiv
Lozano-Robledo, Álvaro On the field of definition of \(p\)-torsion points on elliptic curves over the rationals. (English) Zbl 1277.14028 Math. Ann. 357, No. 1, 279-305 (2013). Reviewer: Alain Kraus (Paris) MSC: 14H52 11G05 14G25 PDF BibTeX XML Cite \textit{Á. Lozano-Robledo}, Math. Ann. 357, No. 1, 279--305 (2013; Zbl 1277.14028) Full Text: DOI
Feng, Tony; James, Kevin; Kim, Carolyn; Ramos, Eric; Trentacoste, Catherine; Xue, Hui Three-Selmer groups for elliptic curves with 3-torsion. (English) Zbl 1281.11054 Ramanujan J. 31, No. 3, 435-459 (2013). MSC: 11G05 14H52 05C90 14G25 PDF BibTeX XML Cite \textit{T. Feng} et al., Ramanujan J. 31, No. 3, 435--459 (2013; Zbl 1281.11054) Full Text: DOI
Clark, Pete L.; Cook, Brian; Stankewicz, James Torsion points on elliptic curves with complex multiplication (With an appendix by Alex Rice). (English) Zbl 1272.11075 Int. J. Number Theory 9, No. 2, 447-480 (2013). Reviewer: Filip Najman (Zagreb) MSC: 11G05 11G15 PDF BibTeX XML Cite \textit{P. L. Clark} et al., Int. J. Number Theory 9, No. 2, 447--480 (2013; Zbl 1272.11075) Full Text: DOI arXiv
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Infinite families of elliptic curves over dihedral quartic number fields. (English) Zbl 1268.11077 J. Number Theory 133, No. 1, 115-122 (2013). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., J. Number Theory 133, No. 1, 115--122 (2013; Zbl 1268.11077) Full Text: DOI
Tadić, Petra The rank of certain subfamilies of the elliptic curve \(Y^2=X^3-X+T^2\). (English) Zbl 1274.11109 Ann. Math. Inform. 40, 145-153 (2012). MSC: 11G05 PDF BibTeX XML Cite \textit{P. Tadić}, Ann. Math. Inform. 40, 145--153 (2012; Zbl 1274.11109) Full Text: Link
Dokchitser, Tim; Dokchitser, Vladimir Surjectivity of mod \(2^n\) representations of elliptic curves. (English) Zbl 1315.11046 Math. Z. 272, No. 3-4, 961-964 (2012). Reviewer: Imin Chen (Burnaby) MSC: 11G05 11F80 14G25 PDF BibTeX XML Cite \textit{T. Dokchitser} and \textit{V. Dokchitser}, Math. Z. 272, No. 3--4, 961--964 (2012; Zbl 1315.11046) Full Text: DOI arXiv
Chen, Yen-Mei J.; Kuan, Yen-Liang On the distribution of torsion points modulo primes. (English) Zbl 1272.11110 Bull. Aust. Math. Soc. 86, No. 2, 339-347 (2012). Reviewer: Michael Th. Rassias (Zürich) MSC: 11N45 11G05 11N13 11R18 PDF BibTeX XML Cite \textit{Y.-M. J. Chen} and \textit{Y.-L. Kuan}, Bull. Aust. Math. Soc. 86, No. 2, 339--347 (2012; Zbl 1272.11110) Full Text: DOI
Murabayashi, Naoki On torsion points of certain CM elliptic curves. (English) Zbl 1290.11098 Funct. Approximatio, Comment. Math. 47, No. 1, 89-93 (2012). MSC: 11G15 11G18 PDF BibTeX XML Cite \textit{N. Murabayashi}, Funct. Approximatio, Comment. Math. 47, No. 1, 89--93 (2012; Zbl 1290.11098) Full Text: DOI Euclid
Najman, Filip Exceptional elliptic curves over quartic fields. (English) Zbl 1295.11064 Int. J. Number Theory 8, No. 5, 1231-1246 (2012). MSC: 11G05 11G18 11R16 14G25 14H52 PDF BibTeX XML Cite \textit{F. Najman}, Int. J. Number Theory 8, No. 5, 1231--1246 (2012; Zbl 1295.11064) Full Text: DOI arXiv
Skorobogatov, Alexei N.; Zarhin, Yuri G. The Brauer group of Kummer surfaces and torsion of elliptic curves. (English) Zbl 1256.14036 J. Reine Angew. Math. 666, 115-140 (2012). Reviewer: Boris Kunyavskii (Ramat Gan) MSC: 14J28 14G05 14G25 14J20 PDF BibTeX XML Cite \textit{A. N. Skorobogatov} and \textit{Y. G. Zarhin}, J. Reine Angew. Math. 666, 115--140 (2012; Zbl 1256.14036) Full Text: DOI arXiv
Takagi, Toshikazu The cuspidal class number formula for the modular curves \(X_1(2p)\). (English) Zbl 1277.11068 J. Math. Soc. Japan 64, No. 1, 23-85, erratum 87-89 (2012). MSC: 11G18 11G05 11G16 14G05 14G35 PDF BibTeX XML Cite \textit{T. Takagi}, J. Math. Soc. Japan 64, No. 1, 23--85 (2012; Zbl 1277.11068) Full Text: DOI
Najman, Filip Torsion of elliptic curves over cubic fields. (English) Zbl 1268.11080 J. Number Theory 132, No. 1, 26-36 (2012). MSC: 11G05 11G18 11R16 14H52 PDF BibTeX XML Cite \textit{F. Najman}, J. Number Theory 132, No. 1, 26--36 (2012; Zbl 1268.11080) Full Text: DOI arXiv
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Families of elliptic curves over quartic number fields with prescribed torsion subgroups. (English) Zbl 1267.11072 Math. Comput. 80, No. 276, 2395-2410 (2011). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., Math. Comput. 80, No. 276, 2395--2410 (2011; Zbl 1267.11072) Full Text: DOI
Jeon, Daeyeol; Kim, Chang Heon; Lee, Yoonjin Families of elliptic curves over cubic number fields with prescribed torsion subgroups. (English) Zbl 1214.11071 Math. Comput. 80, No. 273, 579-591 (2011). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., Math. Comput. 80, No. 273, 579--591 (2011; Zbl 1214.11071) Full Text: DOI
Zywina, David Elliptic curves with maximal Galois action on their torsion points. (English) Zbl 1221.11136 Bull. Lond. Math. Soc. 42, No. 5, 811-826 (2010). Reviewer: Remke Kloosterman (Berlin) MSC: 11G05 11N36 PDF BibTeX XML Cite \textit{D. Zywina}, Bull. Lond. Math. Soc. 42, No. 5, 811--826 (2010; Zbl 1221.11136) Full Text: DOI arXiv
Dujella, Andrej; Jukić Bokun, Mirela On the rank of elliptic curves over \(\mathbb Q(i)\) with torsion group \(\mathbb Z/4\mathbb Z\times \mathbb Z/4\mathbb Z\). (English) Zbl 1217.11058 Proc. Japan Acad., Ser. A 86, No. 6, 93-96 (2010). MSC: 11G05 11Y50 PDF BibTeX XML Cite \textit{A. Dujella} and \textit{M. Jukić Bokun}, Proc. Japan Acad., Ser. A 86, No. 6, 93--96 (2010; Zbl 1217.11058) Full Text: DOI
Liedtke, Christian; Schröer, Stefan The Néron model over the Igusa curves. (English) Zbl 1246.14046 J. Number Theory 130, No. 10, 2157-2197 (2010). Reviewer: Gunther Cornelissen (Utrecht) MSC: 14H52 14H10 14L15 11G07 PDF BibTeX XML Cite \textit{C. Liedtke} and \textit{S. Schröer}, J. Number Theory 130, No. 10, 2157--2197 (2010; Zbl 1246.14046) Full Text: DOI
Baaziz, Houria Equations for the modular curve \(X_1(N)\) and models of elliptic curves with torsion points. (English) Zbl 1252.11038 Math. Comput. 79, No. 272, 2371-2386 (2010). Reviewer: Noburo Ishii (Kyoto) MSC: 11F03 11G05 11G18 11G30 PDF BibTeX XML Cite \textit{H. Baaziz}, Math. Comput. 79, No. 272, 2371--2386 (2010; Zbl 1252.11038) Full Text: DOI
Najman, Filip Complete classification of torsion of elliptic curves over quadratic cyclotomic fields. (English) Zbl 1200.11039 J. Number Theory 130, No. 9, 1964-1968 (2010). Reviewer: Noburo Ishii (Osaka) MSC: 11G05 11G30 14H40 PDF BibTeX XML Cite \textit{F. Najman}, J. Number Theory 130, No. 9, 1964--1968 (2010; Zbl 1200.11039) Full Text: DOI arXiv
Hindry, Marc; Ratazzi, Nicolas Torsion in a product of elliptic curves. (Torsion dans un produit de courbes elliptiques.) (French. English summary) Zbl 1206.11075 J. Ramanujan Math. Soc. 25, No. 1, 81-111 (2010). Reviewer: Remke Kloosterman (Berlin) MSC: 11G10 14K15 11G05 PDF BibTeX XML Cite \textit{M. Hindry} and \textit{N. Ratazzi}, J. Ramanujan Math. Soc. 25, No. 1, 81--111 (2010; Zbl 1206.11075)
Matsuura, Ryota Twisted root numbers of elliptic curves semistable at primes above 2 and 3. (English) Zbl 1205.11064 Algebra Number Theory 4, No. 3, 255-295 (2010). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11G05 11F80 11G40 PDF BibTeX XML Cite \textit{R. Matsuura}, Algebra Number Theory 4, No. 3, 255--295 (2010; Zbl 1205.11064) Full Text: DOI Link
Nakamura, Tetsuo Torsion points on some abelian surfaces of CM-type. (English) Zbl 1205.14056 J. Number Theory 130, No. 4, 1061-1067 (2010). Reviewer: Marco Streng (Coventry) MSC: 14K22 11G05 11G10 11G15 PDF BibTeX XML Cite \textit{T. Nakamura}, J. Number Theory 130, No. 4, 1061--1067 (2010; Zbl 1205.14056) Full Text: DOI
Rovenski, Vladimir Modeling of curves and surfaces with Matlab. (English) Zbl 1206.65061 Springer Undergraduate Texts in Mathematics and Technology. Berlin: Springer (ISBN 978-0-387-71277-2/hbk; 978-0-387-71278-9/ebook). xv, 452 p. (2010). Reviewer: Marian Ioan Munteanu (East Lansing) MSC: 65D17 53-01 68U07 68W20 51M10 65-01 65D18 68U05 53A04 53A05 PDF BibTeX XML Cite \textit{V. Rovenski}, Modeling of curves and surfaces with \texttt{Matlab}. Berlin: Springer (2010; Zbl 1206.65061) Full Text: DOI
Tekcan, Ahmet The elliptic curves \(y^2 = x^3 - 1728x\) over finite fields. (English) Zbl 1194.11069 J. Algebra Number Theory, Adv. Appl. 1, No. 1, 61-74 (2009). Reviewer: Maciej Ulas (Kraków) MSC: 11G20 14H25 14K15 14G99 PDF BibTeX XML Cite \textit{A. Tekcan}, J. Algebra Number Theory, Adv. Appl. 1, No. 1, 61--74 (2009; Zbl 1194.11069) Full Text: Link
David, Agnès Isogenic character and uniform bound for homotheties. (Caractère d’isogénie et borne uniforme pour les homothéties.) (French) Zbl 1216.11060 Strasbourg: Univ. de Strasbourg, Institut de Recherche Mathématique Avancée (IRMA) (Diss.). vi, 52 p. (2008). MSC: 11F80 11G05 14G25 14K15 PDF BibTeX XML Cite \textit{A. David}, Caractère d'isogénie et borne uniforme pour les homothéties. Strasbourg: Univ. de Strasbourg, Institut de Recherche Mathématique Avancée (IRMA) (Diss.) (2008; Zbl 1216.11060) Full Text: Link
Yasuda, Masaya Torsion points of elliptic curves with good reduction. (English) Zbl 1166.14030 Kodai Math. J. 31, No. 3, 385-403 (2008). Reviewer: Christian Pierre (Louvain-la-Neuve) MSC: 14L15 11G05 14H52 PDF BibTeX XML Cite \textit{M. Yasuda}, Kodai Math. J. 31, No. 3, 385--403 (2008; Zbl 1166.14030) Full Text: DOI
Fernández, Julio A moduli approach to quadratic \(\mathbb{Q}\)-curves realizing projective mod \(p\) Galois representations. (English) Zbl 1206.11077 Rev. Mat. Iberoam. 24, No. 1, 1-30 (2008). Reviewer: Florin Nicolae (Berlin) MSC: 11G15 14G35 11G05 PDF BibTeX XML Cite \textit{J. Fernández}, Rev. Mat. Iberoam. 24, No. 1, 1--30 (2008; Zbl 1206.11077) Full Text: DOI Euclid EuDML
Washington, Lawrence C. Elliptic curves. Number theory and cryptography. 2nd ed. (English) Zbl 1200.11043 Boca Raton, FL: Chapman and Hall/CRC (ISBN 978-1-4200-7146-7/hbk). xviii, 513 p. (2008). MSC: 11G20 11G05 11-01 14G50 94A60 11T71 11G50 14G10 PDF BibTeX XML Cite \textit{L. C. Washington}, Elliptic curves. Number theory and cryptography. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC (2008; Zbl 1200.11043)
Kimoto, Kazufumi; Wakayama, Masato Elliptic curves arising from the spectral zeta function for non-commutative harmonic oscillators and \(\Gamma_0(4)\)-modular forms. (English) Zbl 1206.11109 Weng, Lin (ed.) et al., Papers of the conference on \(L\)-functions, Fukuoka, Japan, February 18–23, 2006. Hackensack, NJ: World Scientific (ISBN 978-981-270-504-4/hbk). 201-218 (2007). MSC: 11M36 11F11 11G05 58J52 PDF BibTeX XML Cite \textit{K. Kimoto} and \textit{M. Wakayama}, in: Papers of the conference on \(L\)-functions, Fukuoka, Japan, February 18--23, 2006. Hackensack, NJ: World Scientific. 201--218 (2007; Zbl 1206.11109)
Alkan, Emre; Xiong, Maosheng; Zaharescu, Alexandru Local spacings along curves. (English) Zbl 1111.11007 J. Math. Anal. Appl. 329, No. 1, 721-735 (2007). Reviewer: Yukio Ohkubo (Kagoshima) MSC: 11B05 11K99 PDF BibTeX XML Cite \textit{E. Alkan} et al., J. Math. Anal. Appl. 329, No. 1, 721--735 (2007; Zbl 1111.11007) Full Text: DOI
Ingram, Patrick Diophantine analysis and torsion on elliptic curves. (English) Zbl 1117.11033 Proc. Lond. Math. Soc. (3) 94, No. 1, 137-154 (2007). Reviewer: Sergey Stepanov (Moskva) MSC: 11G05 11J68 PDF BibTeX XML Cite \textit{P. Ingram}, Proc. Lond. Math. Soc. (3) 94, No. 1, 137--154 (2007; Zbl 1117.11033) Full Text: DOI
Boxall, John; Grant, David Some remarks on almost rational torsion points. (English) Zbl 1116.11041 J. Théor. Nombres Bordx. 18, No. 1, 13-28 (2006). Reviewer: Pierre Parent (Talence) MSC: 11G18 11G05 PDF BibTeX XML Cite \textit{J. Boxall} and \textit{D. Grant}, J. Théor. Nombres Bordx. 18, No. 1, 13--28 (2006; Zbl 1116.11041) Full Text: DOI Numdam EuDML
Jeon, Daeyeol; Kim, Chang Heon; Park, Euisung On the torsion of elliptic curves over quartic number fields. (English) Zbl 1165.11054 J. Lond. Math. Soc., II. Ser. 74, No. 1, 1-12 (2006). Reviewer: Andreas Schweizer (Hsinchu) MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., J. Lond. Math. Soc., II. Ser. 74, No. 1, 1--12 (2006; Zbl 1165.11054) Full Text: DOI
Chi, Wen-Chen; Lai, King Fai; Tan, Ki-Seng Integer points on elliptic curves. (English) Zbl 1135.11027 Pac. J. Math. 222, No. 2, 237-252 (2005). Reviewer: Horst G. Zimmer (Saarbrücken) MSC: 11G05 11D45 14K12 14H25 14H52 11R27 11R58 PDF BibTeX XML Cite \textit{W.-C. Chi} et al., Pac. J. Math. 222, No. 2, 237--252 (2005; Zbl 1135.11027) Full Text: DOI Link
Dummigan, Neil Rational torsion on optimal curves. (English) Zbl 1158.11321 Int. J. Number Theory 1, No. 4, 513-531 (2005). MSC: 11G18 11G05 11G40 PDF BibTeX XML Cite \textit{N. Dummigan}, Int. J. Number Theory 1, No. 4, 513--531 (2005; Zbl 1158.11321) Full Text: DOI
Grant, David Geometric proofs of reciprocity laws. (English) Zbl 1113.11059 J. Reine Angew. Math. 586, 91-124 (2005). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R18 11A15 11G10 14K12 PDF BibTeX XML Cite \textit{D. Grant}, J. Reine Angew. Math. 586, 91--124 (2005; Zbl 1113.11059) Full Text: DOI
Schweizer, Andreas On the \(p^e\)-torsion of elliptic curves and elliptic surfaces in characteristic \(p\). (English) Zbl 1087.11040 Trans. Am. Math. Soc. 357, No. 3, 1047-1059 (2005). Reviewer: Horst G. Zimmer (Saarbrücken) MSC: 11G05 14J27 14H52 14H05 11R58 11G20 14G25 14J28 PDF BibTeX XML Cite \textit{A. Schweizer}, Trans. Am. Math. Soc. 357, No. 3, 1047--1059 (2005; Zbl 1087.11040) Full Text: DOI
Lecacheux, Odile The rank of elliptic curves with nontrivial torsion group. (Rang de courbes elliptiques dont le groupe de torsion est non trivial.) (French) Zbl 1108.11045 Ann. Sci. Math. Qué. 28, No. 1-2, 145-151 (2004). Reviewer: Vasyl I. Andriychuk (Lviv) MSC: 11G05 14G25 14J27 PDF BibTeX XML Cite \textit{O. Lecacheux}, Ann. Sci. Math. Qué. 28, No. 1--2, 145--151 (2004; Zbl 1108.11045) Full Text: Link
Elkies, Noam D.; Rogers, Nicholas F. Elliptic curves \(x^3+y^3=k\) of high rank. (English) Zbl 1125.11326 Buell, Duncan (ed.), Algorithmic number theory. 6th international symposium, ANTS-VI, Burlington, VT, USA, June 13–18, 2004. Proceedings. Berlin: Springer (ISBN 3-540-22156-5/pbk). Lecture Notes in Computer Science 3076, 184-193 (2004). MSC: 11G05 PDF BibTeX XML Cite \textit{N. D. Elkies} and \textit{N. F. Rogers}, Lect. Notes Comput. Sci. 3076, 184--193 (2004; Zbl 1125.11326) Full Text: DOI arXiv
Jeon, Daeyeol; Kim, Chang Heon; Schweizer, Andreas On the torsion of elliptic curves over cubic number fields. (English) Zbl 1083.11038 Acta Arith. 113, No. 3, 291-301 (2004). Reviewer: Franz Lemmermeyer (Bilkent) MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{D. Jeon} et al., Acta Arith. 113, No. 3, 291--301 (2004; Zbl 1083.11038) Full Text: DOI Link
Silverman, Joseph H. A lower bound for the canonical height on elliptic curves over abelian extensions. (English) Zbl 1053.11052 J. Number Theory 104, No. 2, 353-372 (2004). Reviewer: Horst G. Zimmer (Saarbrücken) MSC: 11G05 11G10 11G50 14G25 14K15 PDF BibTeX XML Cite \textit{J. H. Silverman}, J. Number Theory 104, No. 2, 353--372 (2004; Zbl 1053.11052) Full Text: DOI
Fujita, Yasutsugu Torsion of elliptic curves over number fields. (English) Zbl 1051.14041 Tohoku Mathematical Publications 27. Sendai: Tohoku University (Thesis). iv, 52 p. (2003). Reviewer: Alessandro Gimigliano (Bologna) MSC: 14H52 11G05 PDF BibTeX XML Cite \textit{Y. Fujita}, Torsion of elliptic curves over number fields. Sendai: Tohoku University (Thesis) (2003; Zbl 1051.14041) Full Text: Link
Rebolledo Hochart, Marusia Fields that are generated by the 13-torsion points of elliptic curves. (Corps engendré par les points de 13-torsion des courbes elliptiques.) (French) Zbl 1049.11058 Acta Arith. 109, No. 3, 219-230 (2003). Reviewer: Jordi Guárdia i Rúbies (Vilanova i la Geltrú) MSC: 11G05 11F67 11G18 11G40 PDF BibTeX XML Cite \textit{M. Rebolledo Hochart}, Acta Arith. 109, No. 3, 219--230 (2003; Zbl 1049.11058) Full Text: DOI
Köhler, Kai; Roessler, Damian A fixed point formula of Lefschetz type in Arakelov geometry. IV: The modular height of C. M. Abelian varieties. (English) Zbl 1032.14004 J. Reine Angew. Math. 556, 127-148 (2003). Reviewer: Bernhard Köck (Southampton) MSC: 14G40 14K22 11G15 PDF BibTeX XML Cite \textit{K. Köhler} and \textit{D. Roessler}, J. Reine Angew. Math. 556, 127--148 (2003; Zbl 1032.14004) Full Text: DOI
Oka, Mutsuo Elliptic curves from sextics. (English) Zbl 1060.14035 J. Math. Soc. Japan 54, No. 2, 349-371 (2002). MSC: 14H10 14H52 PDF BibTeX XML Cite \textit{M. Oka}, J. Math. Soc. Japan 54, No. 2, 349--371 (2002; Zbl 1060.14035) Full Text: DOI arXiv
Koblitz, Neal Good and bad uses of elliptic curves in cryptography. (English) Zbl 1063.11051 Mosc. Math. J. 2, No. 4, 693-715 (2002). MSC: 11T71 14G50 11G20 94A60 11Y16 94A62 PDF BibTeX XML Cite \textit{N. Koblitz}, Mosc. Math. J. 2, No. 4, 693--715 (2002; Zbl 1063.11051)
Qiu, Derong; Zhang, Xianke Explicit classification for torsion subgroups of rational points of elliptic curves. (English) Zbl 1053.11051 Acta Math. Sin., Engl. Ser. 18, No. 3, 539-548 (2002). Reviewer: Horst G. Zimmer (Saarbrücken) MSC: 11G05 14G05 PDF BibTeX XML Cite \textit{D. Qiu} and \textit{X. Zhang}, Acta Math. Sin., Engl. Ser. 18, No. 3, 539--548 (2002; Zbl 1053.11051) Full Text: DOI arXiv