zbMATH — the first resource for mathematics

On semi-periods. (English) Zbl 0982.32014
Summary: The periods of the three-form on a Calabi-Yau manifold are found as solutions of the Picard-Fuchs equations; however, the toric varietal method leads to a generalized hypergeometric system of equations, first introduced by Gelfand, Kapranov and Zelevinsky, which has more solutions than just the periods. This same extended set of equations can be derived from symmetry considerations. Semi-periods are solutions of the extended GKZ system. They are obtained by integration of the three-form over chains; these chains can be used to construct cycles which, when integrated over, give periods. In simple examples we are able to obtain the complete set of solutions for the GKZ system. We also conjecture that a certain modification of the method will generate the full space of solutions in general.

32G20 Period matrices, variation of Hodge structure; degenerations
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32J17 Compact complex \(3\)-folds
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv
[1] Hübsch, T., Calabi-Yau manifolds—A bestiary for physicists, (1992), World Scientific Singapore · Zbl 0771.53002
[2] Candelas, P.; Green, P.S.; Hübsch, T., Nucl. phys. B, 330, 49, (1990)
[3] Strominger, A., Commun. math. phys., 133, 163, (1990)
[4] Candelas, P.; de la Ossa, X.C., Nucl. phys. B, 355, 455, (1991)
[5] Candelas, P., Nucl. phys. B, 298, 458, (1988)
[6] Atiyah, M.; Bott, R.; Gårding, L., Acta math., 131, 145, (1973)
[7] Berglund, P.; Derrick, E.; Hübsch, T.; Jančić, D., Nucl. phys. B, 420, 268, (1994)
[8] Berglund, P.; Hübsch, T., Nucl. phys. B, 411, 223, (1994)
[9] Candelas, P.; Lynker, M.; Schimmrigk, R., Nucl. phys. B, 341, 383, (1990)
[10] Hübsch, T., Commun. math. phys., 108, 291, (1987)
[11] Green, P.; Hübsch, T., Commun. math. phys., 109, 99, (1987)
[12] Candelas, P.; Dale, A.M.; Lütken, C.A.; Schimmrigk, R., Nucl. phys. B, 298, 493, (1988)
[13] Greene, B.; Roan, S.-S.; Yau, S.-T., Commun. math. phys., 142, 245, (1991)
[14] Candelas, P.; Derrick, E.; Parkes, L., Nucl. phys. B, 407, 115, (1993)
[15] Schimmrigk, R., Phys. rev. lett., 70, 3688, (1993)
[16] M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, CERN preprint CERNTH-6373/92. · Zbl 0767.57019
[17] Kreuzer, M.; Skarke, H., Nucl. phys. B, 388, 113, (1992)
[18] Klemm, A.; Schimmrigk, R., Nucl. phys. B, 411, 559, (1994)
[19] Batyrev, V., Duke math. J., 69, 349, (1993)
[20] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S.-T., Commun. math. phys., 167, 301, (1995)
[21] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S.-T., Nucl. phys. B, 433, 501, (1995)
[22] Candelas, P.; de la Ossa, X.; Katz, S., Nucl. phys. B, 450, 267, (1995)
[23] Berglund, P.; Katz, S.; Klemm, A., Nucl. phys. B, 456, 153, (1995)
[24] Yau, S.-T., ()
[25] Gelfand, I.M.; Zelevinski, A.V.; Kapranov, M.M., Func. anal. appl., Vol. 23, No. 2, 94, (1989)
[26] S. Hosono, B.H. Lian and S.-T. Yau, KZ-generalized hypergeometric system in mirror symmetry of Calabi-Yau hypersurfaces, alg-geom/9511001.
[27] Erdélyi, A.; Oberhettinger, F.; Magnus, W.; Tricomi, F.G., Higher transcendental functions, (1953), McGraw-Hill New York, 3 volumes · Zbl 0052.29502
[28] Berglund, P.; Candelas, P.; de la Ossa, X.; Font, A.; Hübsch, T.; Jančić, D.; Quevedo, F., Nucl. phys. B, 419, 352, (1994)
[29] Klemm, A.; Lerche, W.; Mayr, P., Phys. lett. B, 357, 313, (1995)
[30] B.H. Lian and S.-T. Yau, Mirror maps, modular relations and hypergeometric series II, hep-th/9507153. · Zbl 0957.32501
[31] Sansone, G.; Gerretsen, J., Lectures on the theory of functions of a complex variable, (1969), Wolters-Noordhoff Groningen · Zbl 0188.38104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.