×

Construction of energy-stable projection-based reduced order models. (English) Zbl 1339.65174

Summary: An approach for building energy-stable Galerkin reduced order models (ROMs) for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. This method is an extension of earlier work by the authors specific to the equations of linearized compressible inviscid flow. The key idea is to apply to the PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. For linear problems, the desired transformation is induced by a special inner product, termed the “symmetry inner product”, which is derived herein for several systems of physical interest. Connections are established between the proposed approach and other stability-preserving model reduction methods, giving the paper a review flavor. More specifically, it is shown that a discrete counterpart of this inner product is a weighted \(L^2\) inner product obtained by solving a Lyapunov equation, first proposed by Rowley et al. and termed herein the “Lyapunov inner product”. Comparisons between the symmetry inner product and the Lyapunov inner product are made, and the performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Serre, G.; Lafon, P.; Gloerfelt, X.; Bailly, C., Reliable reduced-order models for time-dependent linearized Euler equations, J. Comput. Phys., 231, 15, 5176-5194 (2012) · Zbl 1248.35155
[2] Layton, W. J., Stable Galerkin methods for hyperbolic systems, SIAM J. Numer. Anal., 20, 3, 221-233 (1983) · Zbl 0518.65084
[3] Kwasniok, F., Empirical low-order models of barotropic flow, J. Atmos. Sci., 61, 2, 235-245 (2004)
[4] Gunzburger, M. D., On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems, Math. Comput., 31, 139, 661-675 (1977) · Zbl 0395.65060
[5] Amsallem, D.; Farhat, C., Stabilization of projection-based reduced order models, Int. J. Numer. Methods Eng., 91, 4, 358-377 (2012) · Zbl 1253.90184
[6] Barone, M. F.; Kalashnikova, I.; Segalman, D. J.; Thornquist, H., Stable Galerkin reduced order models for linearized compressible flow, J. Comput. Phys., 288, 1932-1946 (2009) · Zbl 1162.76025
[7] Kalashnikova, I.; Barone, M. F., On the stability and convergence of a Galerkin reduced order model (ROM) for compressible flow with solid wall and far-field boundary treatment, Int. J. Numer. Methods Eng., 83, 1345-1375 (2010) · Zbl 1202.74123
[8] Gustafsson, B.; Sundstrom, A., Incompletely parabolic problems in fluid dynamics, SIAM J. Appl. Math., 35, 2, 343-357 (1978) · Zbl 0389.76050
[9] Abarbanel, S.; Gottlieb, D., Optimal time splitting for two- and three-dimensional Navier-Stokes equations with mixed derivatives, J. Comput. Phys., 41, 1-33 (1981) · Zbl 0467.76062
[10] Gugercin, S.; Antoulas, A. C., A survey of model reduction by balanced truncation and some new results, Int. J. Control, 77, 8, 748-766 (2004) · Zbl 1061.93022
[11] Gugercin, S.; Li, J.-R., Smith-type methods for balanced truncation of large sparse systems, Lect. Notes Comput. Sci. Eng., 45, 49-82 (2005) · Zbl 1215.93026
[12] Gustafsson, B., High Order Difference Methods for Time Dependent PDE (2008), Springer-Verlag · Zbl 1146.65064
[13] Gustafsson, B.; Kreiss, H.-O.; Oliger, J., Time Dependent Problems and Difference Methods (1995), Wiley-Interscience · Zbl 0843.65061
[14] Astrom, K. J.; Murray, R. M., Feedback Systems: An Introduction for Scientists and Engineers (2008), Princeton University Press · Zbl 1144.93001
[15] Lumley, J. L., Stochastic Tools in Turbulence (1971), Academic Press: Academic Press New York
[16] Bishop, R. H., The Mechatronics Handbook (2002), CRC Press LLC
[17] Kimura, H., Chain-Scattering Approach to H-infinity Control (1997), Springer · Zbl 0862.93001
[18] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press · Zbl 0890.76001
[19] Kreiss, H. O.; Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations (1989), Academic Press Inc · Zbl 0689.35001
[20] Bui-Thanh, T.; Willcox, K.; Ghattas, O.; van Bloemen Waanders, B., Goal-oriented, model constrained optimization for reduction of large-scale systems, J. Comput. Phys., 224, 880-896 (2007) · Zbl 1123.65081
[21] Benner, P.; Castillo, M.; Quintana-Orti, E. S.; Quintana-Orti, G., Parallel model reduction of large-scale unstable systems, Adv. Parallel Comput., 13, 251-258 (2004)
[22] Rowley, C. W., Model reduction for fluids using balanced proper orthogonal decomposition, Int. J. Bifur. Chaos, 15, 3, 997-1013 (2005) · Zbl 1140.76443
[23] Rowley, C. W.; Colonius, T.; Murray, R. M., Model reduction for compressible flows using POD and Galerkin projection, Phys. D, 189, 115-129 (2004) · Zbl 1098.76602
[24] Sirovich, L., Turbulence and the dynamics of coherent structures, part III: dynamics and scaling, Q. Appl. Math., 45, 3, 583-590 (1987) · Zbl 0676.76047
[25] Aubry, N.; Holmes, P.; Lumley, J.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173 (1988) · Zbl 0643.76066
[26] Veroy, K.; Patera, A. T., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-bases a posteriori error bounds, J. Numer. Methods Fluids, 47, 773-788 (2005) · Zbl 1134.76326
[27] Rozza, G., Reduced basis approximation and error bounds for potential flows in parametrized geometries, Commun. Comput. Phys., 9, 1, 1-48 (2011) · Zbl 1284.76295
[28] Moore, B., Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control, 26, 1 (1981) · Zbl 0464.93022
[30] Willcox, K.; Peraire, J., Balanced model reduction via the proper orthogonal decomposition, AIAA J., 40, 11, 2323-2330 (2002)
[32] Rathinam, M.; Petzold, L. R., A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41, 5, 1893-1925 (2003) · Zbl 1053.65106
[33] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 2, 492-515 (2002) · Zbl 1075.65118
[34] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, Traian, Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237-240 (2012) · Zbl 1253.76050
[35] Funaro, D.; Gottlieb, D., Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment, Math. Comput., 196, 57, 585-596 (1991) · Zbl 0736.65074
[36] Barbagallo, A.; Sipp, D.; Schmid, P. J., Closed-loop control of an open cavity flow using reduced-order models, J. Fluid Mech., 641, 1-50 (2009) · Zbl 1183.76701
[38] Balajewicz, M. J.; Dowell, E. H.; Noack, B. R., Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation, J. Fluid Mech., 729, 285-308 (2013) · Zbl 1291.76164
[42] Lienemann, J.; Rudnyi, E. B.; Korvink, J. G., MST MEMS model order reduction: requirements and benchmarks, Linear Algebra Appl., 415, 2-3, 469-498 (2006) · Zbl 1089.74048
[43] Weaver, W.; Timoshenko, S. P.; Young, D. H., Vibration Problems in Engineering (1990), Wiley
[45] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods (1977), SIAM · Zbl 0412.65058
[46] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Trans. Math. Softw., 31, 3 (2005) · Zbl 1136.65354
[47] Kirk, B.; Peterson, J. W.; Stogner, R. H.; Carey, G. F., libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 3-4, 237254 (2006)
[48] Sankaran, V.; Menon, S., LES of scalar mixing in supersonic shear layers, Proc. Combust. Inst., 30, 2, 2835-2842 (2004) · Zbl 1055.81091
[49] Genin, F.; Menon, S., Studies of shock/turbulent shear layer interaction using large-eddy simulation, Comput. Fluids, 39, 800-819 (2010) · Zbl 1242.76063
[50] Genin, F.; Menon, S., Dynamics of sonic jet injection into supersonic crossflow, J. Turbul., 11, 4, 1-30 (2010) · Zbl 1273.76255
[51] Haddad, W. M.; Nersesov, S. G., Stability and Control of Large-Scale Dynamical Systems: A Vector Dissipative Systems Approach (2011), Princeton University Press · Zbl 1256.93003
[52] Gronwall, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20, 2, 292-296 (1919) · JFM 47.0399.02
[53] Kalashnikova, I.; van Bloemen Waanders, B. G.; Arunajatesan, S.; Barone, M. F., Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment, Comput. Methods Appl. Mech. Eng., 272, 251-270 (2014) · Zbl 1296.93165
[56] Li, J.-R.; White, J., Low-Rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24, 1, 260-280 (2002) · Zbl 1016.65024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.