×

Time domain tuning of fractional order controllers combined with a Smith predictor for automation of water distribution in irrigation main channel pools. (English) Zbl 1327.93172

Summary: This paper proposes a new technique for designing fractional order controllers applied to the automation of main canal pools of a water irrigation system. As large variation of all the plant parameters is present in such systems, a fractional order family of controllers combined with a Smith Predictor is designed using time domain specifications. The designed controllers are compared with the standard combination of a Smith Predictor with a proportional-integral (\(PI\)) controller. All these controllers are tuned to fulfil the same time specifications in the case of canal nominal dynamics. In some canals the plant parameters may experience large changes that deteriorate the time response, and can even unstabilize the closed-loop system. The fractional controllers are therefore designed to minimize the loss of performance of the system to variations in these parameters. Simulated results show the performance improvements achieved with these controllers compared with a conventional \(PI\) controller.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
34A08 Fractional ordinary differential equations
93C95 Application models in control theory

Software:

CRONE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Martin de Santa Olalla, Integrated water resources management of the hydrogeological unit ’Eastern Mancha’ using bayesian belief networks, Agric. Water Manage. 77 pp 21– (2005) · doi:10.1016/j.agwat.2004.09.029
[2] Stockle, IV International Congress of Agricultural Engineering (2001)
[3] Wahlin, Automatic downstream water-level feedback control of branching canal networks: theory, J. Irrig. Drainage Eng-ASCE 132 (3) pp 198– (2006) · doi:10.1061/(ASCE)0733-9437(2006)132:3(198)
[4] Postel, Last Oasis: Facing Water Scarcity (1992)
[5] Tockner, The Danube restoration project species diversity patterns across connectivity gradients in the floodplain system, Regulated Rivers: Res. and Manage. 15 pp 245– (1999) · doi:10.1002/(SICI)1099-1646(199901/06)15:1/3<245::AID-RRR540>3.0.CO;2-G
[6] Zsuffa, Impact of Austrian hydropower plants on the flood control safety of the Hungarian Danube reach, Hydro. Sci. J. 44 (2009)
[7] Delebecque, Contribution of stochastic control singular perturbation averaging and team theories to an example of large-scale systems: Management of hydropower production, IEEE Trans. Autom. Control. 23 (2) pp 209– (1978) · Zbl 0379.93055 · doi:10.1109/TAC.1978.1101726
[8] Wah-Chun, Automatic generation control of interconnected power systems using variable-structure controllers, Generation, Transmission and Distribution, IEE Proces. C 128 (5) pp 269– (1981) · doi:10.1049/ip-c.1981.0046
[9] Litrico, Modeling and Control of Hydrosystems (2009)
[10] Chaudhry, Open-Channel Flow (1993)
[11] Weyer, System identification of an open water channel, Control Eng. Practice 9 pp 1289– (2001) · doi:10.1016/S0967-0661(01)00099-5
[12] Ooi, On physical and data driven modelling of irrigation channels, Control Eng. Practice 13 (4) pp 461– (2005) · doi:10.1016/j.conengprac.2004.04.006
[13] Rivas-Perez, Robust system identification of an irrigation main canal, Adv. Water Resources 130 pp 1785– (2007) · doi:10.1016/j.advwatres.2007.02.002
[14] Malaterre, Classification of canal control algorithms, J. Irrig. Drainage Eng-ASCE 124 (1) pp 3– (1998) · doi:10.1061/(ASCE)0733-9437(1998)124:1(3)
[15] Begovich, Real-time implementation of a decentralized control for an open irrigation canal prototype, Asian J. Control 19 (2) pp 170– (2007)
[16] Overloop, Model Predictive Control on Open Water Systems (2006)
[17] Litrico, Tuning of robust distant downstream PI controllers for an irrigation canal pool: (I) theory, J. Irrig. Drainage Eng-ASCE 132 (4) pp 359– (2006) · doi:10.1061/(ASCE)0733-9437(2006)132:4(359)
[18] Deltour, Introduction of Smith predictor into dynamic regulation, J. Irrig. Drainage Eng-ASCE 124 (1) pp 3– (1998) · doi:10.1061/(ASCE)0733-9437(1998)124:1(47)
[19] Litrico, Robust continuous-time and discrete-time flow control of a dam-river system: (II) Controller design, Appl. Math. Modelling 23 (11) pp 829– (1999) · Zbl 0953.93056 · doi:10.1016/S0307-904X(99)00013-X
[20] Laughlin, Smith predictor design for robust performance, Int. J. Control 46 pp 477– (1987) · Zbl 0627.93024 · doi:10.1080/00207178708933912
[21] Palmor, The Control Handbook. Time Delay Compensation: Smith Predictor and its Modifications (1996)
[22] Oustaloup, La Commande CRONE: Commande Robuste dOrdre non Entier (1991)
[23] Monje, Tuning and auto-tuning of fractional order controllers for industry applications, Control Eng. Practice 16 (9) pp 798– (2008) · doi:10.1016/j.conengprac.2007.08.006
[24] Li, Fractional-order iterative learning control for fractional-order linear systems, Asian J. Control 13 pp 5463– (2011) · Zbl 1248.93085 · doi:10.1002/asjc.253
[25] Podlubny, Fractional-order systems and PI{\(\lambda\)}D{\(\mu\)} controllers, IEEE Trans. Autom. Control. 44 (1) pp 20814– (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[26] Monje, On fractional PI controllers: some tuning rules for robustness to plant uncertainties, Nonlinear Dynamics 38 pp 369– (2004) · Zbl 1134.93338 · doi:10.1007/s11071-004-3767-3
[27] Khandani, A new approach to design Smith predictor based fractional order controllers, Int. J. Comput. Elect. Eng. 2 (4) pp 1793– (2010)
[28] Jesus, Fractional control with a Smith predictor, J. Comput. Nonlinear Dyn. 6 (3) pp 031014– (2011) · doi:10.1115/1.4002834
[29] Feliu-Batlle, Fractional robust control of main irrigation canals with variable dynamic parameters, Control Eng. Practice 15 (6) pp 673– (2007) · doi:10.1016/j.conengprac.2006.11.018
[30] Feliu-Batlle, Robust fractional order controller for irrigation main canal pools with time-varying dynamical parameters, Comput. Electron. in Agricu. 76 (2) pp 205– (2011) · doi:10.1016/j.compag.2011.01.018
[31] Feliu Batlle, Robust Fractional Order PI Controller Implemented on a Hydraulic Canal, J. Hydraulic Eng.-ASCE 135 (5) pp 271– (2009) · doi:10.1061/(ASCE)0733-9429(2009)135:4(271)
[32] Feliu-Batlle, Smith predictor based robust fractional order control. Application to water distribution in a main irrigation canal pool, J. Process. Cont. 19 (3) pp 506– (2009) · doi:10.1016/j.jprocont.2008.05.004
[33] Feliu-Batlle, Fractional order controller robust to time delay for water distribution in an irrigation main canal pool, Comput. Electron. Agric. 69 (2) pp 185– (2009) · doi:10.1016/j.compag.2009.08.005
[34] Domingues, Rule-based fractional control of an irrigation canal, J. Comput. Nonlinear Dyn. 6 (2) pp 024503– (2011) · doi:10.1115/1.4002509
[35] Castillo-Garcia, Design of a Class of Fractional Controllers from Frequency Specifications with Guaranteed Time Domain Behaviour, Comput. Math. Appl. 59 pp 1656– (2010) · Zbl 1189.93045 · doi:10.1016/j.camwa.2009.08.007
[36] Castillo-Garcia , F. J. V. Feliu-Batlle R. Rivas-Perez L. Sanchez-Rodriguez Time domain tuning of a fractional order PI controller combined with a Smith predictor for automation of water distribution in irrigation main channel pools 18th IFAC World Congress Milan, Italy 2011 · Zbl 1327.93172
[37] Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications (1999) · Zbl 0924.34008
[38] Litrico, Modeling and Control of Hydrosystems (2009) · doi:10.1007/978-1-84882-624-3
[39] Clemmens, Simple optimal downstream feedback canal controllers: ASCE test case results, J. Irrig. and Drainage Eng. 130 (1) pp 35– (2004) · doi:10.1061/(ASCE)0733-9437(2004)130:1(35)
[40] Rogers, Canal Systems Automation Manual 2 (1995)
[41] Banos, Bode optimal loop zapping with CRONE compensators, J. Vib. and Control 17 (13) pp 1964– (2011) · Zbl 1271.93063 · doi:10.1177/1077546310388002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.