×

Effects of limited medical resource on a Filippov infectious disease model induced by selection pressure. (English) Zbl 1410.92061

Summary: In reality, the outbreak of emerging infectious diseases including SARS, A/H1N1 and Ebola are accompanied by the common cold and flu. The selective treatment measure for mitigating and controlling the emerging infectious diseases should be implemented due to limited medical resources. However, how to determine the threshold infected cases and when to implement the selective treatment tactics are crucial for disease control. To address this, we derive a non-smooth Filippov system induced by selective treatment measure. The dynamic behaviors of two subsystems have been discussed completely, and the existence conditions for sliding segment, sliding mode dynamics and different types of equilibria such as regular equilibrium, pseudo-equilibrium, boundary equilibrium and tangent point have been provided. Further, numerical sliding bifurcation analyses show that the proposed Filippov system has rich sliding bifurcations. Especially, the most interesting results are those for the fixed parameter set as the bifurcation parameter varies, the sliding bifurcations occur sequentially: crossing \(\rightarrow\) buckling \(\rightarrow\) real/virtual equilibrium \(\rightarrow\) buckling \(\rightarrow\) crossing. The key factors which affect the selective treatment measures and the threshold value of infected cases for emerging infectious disease have been discussed in more detail.

MSC:

92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] McLean, A. R.; May, R. M.; Pattison, J.; Weiss, R. A., SARS: A Case Study in Emerging infections (2005), Oxford University Press: Oxford University Press Oxford
[2] Mangili, A.; Gendreau, M. A., Transmission of infectious diseases during commercial air travel, Lancet, 365, 989-996 (2005)
[3] Soundararajan, V.; Tharakaraman, K.; Raman, R.; Raguram, S.; Shriver, Z.; Sasisekharan, V.; Sasisekharan, R., Extrapolating from sequence the 2009 h1n1 ’swine’ influenza virus, Nat. Biotechnol., 27, 510-513 (2009)
[4] WHO ebola response team, ebola virus disease in west Africa-the first 9 months of the epidemic and forward projections, N. Engl. J. Med., 371, 1481-1495 (2014)
[5] Derouich, M.; Boutayeb, A., Dengue fever: Mathematical modelling and computer simulation, Appl. Math. Comput., 117, 528-544 (2006) · Zbl 1121.92056
[6] Matrajt, L.; Halloran, M. E.; Longini, I. M., Optimal vaccine allocation for the early mitigation of pandemic influenza, PLoS Comput. Biol., 9, e1002964 (2013)
[7] Sullivan, S. P.; Koutsonanos, D. G.; Martin, M. D.P.; Lee, L. W.; Zarnitsyn, V.; Choi, S. O.; Murthy, N.; Compans, R. W.; Skountzou, J.; Prausnitz, M. R., Dissolving polymer microneedle patches for influenza vaccination, Nat. Med., 16, 915-920 (2010)
[9] Qin, W. J.; Tang, S. Y.; Cheke, R. A., Nonlinear pulse vaccination in an SIR epidemic model with resource limitation, Abstr. Appl. Anal. (2013) · Zbl 1420.92067
[10] Qin, W. J.; Tang, S. Y., The selection pressures induced non-smooth infectious disease model and bifurcation analysis, Chaos Solitons Fractals, 69, 160-171 (2014) · Zbl 1352.92165
[11] Utkin, V. I., Sliding Modes and Their Applications in Variable Structure Systems (1978), Mir Publishers: Mir Publishers Moscow · Zbl 0398.93003
[12] Utkin, V. I., Sliding Modes in Control and Optimization (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0748.93044
[13] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides (1988), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0664.34001
[14] Utkin, V. I.; Guldner, J.; Shi, J. X., Sliding Model Control in Electromechanical Systems (2009), Taylor Francis Group: Taylor Francis Group London
[15] Xiao, Y. N.; Xu, X. X.; Tang, S. Y., Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74, 2403-2422 (2012) · Zbl 1312.92043
[16] Wang, A. L.; Xiao, Y. N., Sliding bifurcation and global dynamics of a filippov epidemic model with vaccination, Int. J. Bifurc. Chaos, 23, 1350144 (2013) · Zbl 1275.34069
[17] Wang, A. L.; Xiao, Y. N., A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal. Hybrid Syst., 11, 84-97 (2014) · Zbl 1323.92215
[18] Wang, A. L.; Xiao, Y. N.; Cheke, R. A., Global dynamics of a piece-wise epidemic model with switching vaccination strategy, Discret. Contin. Dyn. Syst. Ser. B, 19, 2915-2940 (2014) · Zbl 1327.92067
[19] Wang, W. D.; Ruan, S. G., Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291, 775-793 (2004) · Zbl 1054.34071
[20] Wang, W. D., Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201, 58-71 (2006) · Zbl 1093.92054
[21] Hu, Z. X.; Liu, S.; Wang, H., Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Anal. Real World Appl., 9, 2302-2312 (2008) · Zbl 1156.34320
[22] Zhang, X.; Liu, X. N., Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348, 433-443 (2008) · Zbl 1144.92038
[23] Cui, J. A.; Mu, X. X.; Wan, H., Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol., 254, 275-283 (2008) · Zbl 1400.92472
[24] Wan, H.; Cui, J. A., Rich dynamics of an epidemic model with saturation recovery, J. Appl. Math. (2013) · Zbl 1266.92057
[25] Zhou, L. H.; Fan, M., Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13, 312-324 (2012) · Zbl 1238.37041
[26] Bernardo, M.d.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P.; Nordmark, A. B.; Tost, G. O.; Piiroinen, P. T., Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50, 629-701 (2008) · Zbl 1168.34006
[27] Guardia, M.; Seara, T. M.; Teixeira, M. A., Generic bifurcations of low codimension of planar Filippov systems, J. Differ. Equ., 250, 1967-2023 (2011) · Zbl 1225.34046
[28] Ślebodziński, W., Sur les équations de Hamilton, Bull. Acad. R. Belg., 17, 864-870 (1931) · JFM 57.0498.02
[29] Buzzi, C. A.; Silva, P. R.; Teixeira, M. A., A singular approach to discontinuous vector fields on the plane, J. Differ. Equ., 231, 633-655 (2006) · Zbl 1116.34008
[31] Kuznetsov, Y. A.; Rinaldi, S.; Gragnani, A., One parameter bifurcations in planar Filippov systems, Int. J. Bifurc. Chaos, 13, 2157-2188 (2003) · Zbl 1079.34029
[32] Baer, S. M.; Kooi, B. W.; Kuznetsov, Y. A.; Thieme, H. R., Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66, 1339-1365 (2006) · Zbl 1106.34030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.