×

zbMATH — the first resource for mathematics

Distributed coordination of multi-agent systems for neutralizing unknown threats based on a mixed coverage-tracking metric. (English) Zbl 1454.93016
Summary: This paper presents a coordination control method for neutralizing multiple threats by a team of mobile agents in a bounded area. Threat here refers to an unexpected target intruding into the area. Without knowing the number of threats, how they maneuver and when to appear a priori, agents equipped with active sensing and actuating devices are driven to detect, track and intercept those threats as many as possible. In order to increase the probability of detecting new threats, a metric (called the mixed coverage-tracking metric) with dynamic task assignment mechanism is introduced. More specifically, the metric is a weighted sum of the travel cost for area coverage and threat tracking respectively. The control objective is to find optimal trajectories and task assignment values of agents that can minimize the expected mixed metric. Based on Voronoi partition of the mission area, a gradient based control law is designed to drive each agent towards its locally optimum configuration. Meanwhile, a task assignment control law is employed to smoothly switch between area coverage and threat tracking depending on the density of detected threats within each agent’s Voronoi cell. Resorting to optimal control and Lyapunov stability theory, the proposed control method can guarantee that each agent asymptotically converges to its centroid of Voronoi cell. Simulation examples are provided to illustrate the effectiveness of the theoretical results.
MSC:
93A16 Multi-agent systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138
[2] Guan, Z. H.; Hu, B.; Shen, X., Introduction to Hybrid Intelligent Networks (2019), Springer
[3] Ge, X.; Han, Q. L.; Ding, D.; Zhang, X. M.; Ning, B., A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems, Neurocomputing, 275, 1684-1701 (2018)
[4] Corts, J.; Martnez, S.; Bullo, F., Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions, IEEE Trans. Autom. Control, 51, 8, 1289-1298 (2006) · Zbl 1366.93400
[5] Oh, K. K.; Park, M. C.; Ahn, H. S., A survey of multi-agent formation control, Automatica, 53, 424-440 (2015) · Zbl 1371.93015
[6] Su, H.; Wang, X.; Lin, Z., Flocking of multi-agents with a virtual leader, IEEE Trans. Autom. Control, 54, 2, 293-307 (2009) · Zbl 1367.37059
[7] Liu, H.; Xie, G.; Wang, L., Necessary and sufficient conditions for containment control of networked multi-agent systems, Automatica, 48, 7, 1415-1422 (2012) · Zbl 1246.93008
[8] Hu, B.; Guan, Z. H.; Fu, M., Distributed event-driven control for finite-time consensus, Automatica, 103, 88-95 (2019) · Zbl 1415.93019
[9] Corts, J.; Martinez, S.; Karatas, T.; Bullo, F., Coverage control for mobile sensing networks, IEEE Trans. Robot. Autom., 20, 2, 243-255 (2004)
[10] Bullo, F.; Cortes, J.; Martinez, S., Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms (2009), Princeton University Press · Zbl 1193.93137
[11] Dunbabin, M.; Marques, L., Robots for environmental monitoring: significant advancements and applications, IEEE Robot. Autom. Mag., 19, 1, 24-39 (2012)
[12] Huda, S.; Miah, S.; Hassan, M. M.; Islam, R.; Yearwood, J.; Alrubaian, M.; Almogren, A., Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data, Inf. Sci., 379, 211-228 (2017)
[13] Luo, K.; Guan, Z. H.; Cai, C. X.; Zhang, D. X.; Lai, Q.; Xiao, J. W., Coordination of nonholonomic mobile robots for diffusive threat defense, J. Frankl. Inst., 356, 8, 4690-4715 (2019) · Zbl 1412.93059
[14] Miah, S.; Nguyen, B.; Bourque, F. A.; Spinello, D., Nonuniform deployment of autonomous agents in harbor-like environments, Unmanned Syst., 2, 04, 377-389 (2014)
[15] Sun, W.; Tsiotras, P., Sequential pursuit of multiple targets under external disturbances via zermelo-voronoi diagrams, Automatica, 81, 253-260 (2017) · Zbl 1373.49047
[16] Zhai, C.; He, F.; Hong, Y.; Wang, L.; Yao, Y., Coverage-based interception algorithm of multiple interceptors against the target involving decoys, J. Guidance Control Dyn., 39, 7, 1647-1653 (2016)
[17] Frew, E. W.; Lawrence, D. A.; Morris, S., Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields, J. Guid. Control Dyn., 31, 2, 290-306 (2008)
[18] Bopardikar, S. D.; Smith, S. L.; Bullo, F., On vehicle placement to intercept moving targets, Automatica, 47, 9, 2067-2074 (2011) · Zbl 1229.93163
[19] Beard, R. W.; McLain, T. W.; Goodrich, M. A.; Anderson, E. P., Coordinated target assignment and intercept for unmanned air vehicles, IEEE Trans. Robot. Automat., 18, 6, 911-922 (2002)
[20] Li, W.; Cassandras, C. G., A cooperative receding horizon controller for multivehicle uncertain environments, IEEE Trans. Autom. Control, 51, 2, 242-257 (2006) · Zbl 1366.93280
[21] J. Cortes, S. Martinez, T. Karatas, F. Bullo, Coverage control for mobile sensing networks, Proceedings of the IEEE International Conference on Robotics and Automation 2(2002) 1327-1332.
[22] 85-99 · Zbl 1215.93101
[23] Miah, S.; Panah, A. Y.; Fallah, M. M.H.; Spinello, D., Generalized non-autonomous metric optimization for area coverage problems with mobile autonomous agents, Automatica, 80, 295-299 (2017) · Zbl 1370.93021
[24] Lee, S. G.; Egerstedt, M., Controlled coverage using time-varying density functions, IFAC Proc., 46, 27, 220-226 (2013)
[25] Lee, S. G.; Diaz-Mercado, Y.; Egerstedt, M., Multirobot control using time-varying density functions, IEEE Trans. Robot., 31, 2, 489-493 (2015)
[26] Du, Q.; Gunzburger, M. D.; Ju, L., Constrained centroidal voronoi tessellations for surfaces, SIAM J. Scient. Comput., 24, 5, 1488-1506 (2003) · Zbl 1036.65101
[27] Flanders, H., Differentiation under the integral sign, Am. Math. Monthly, 80, 6, 615-627 (1973) · Zbl 0266.26010
[28] P.A. Ioannou, J. Sun, Robust adaptive control, courier corporation, 2012,
[29] Du, Q.; Faber, V.; Gunzburger, M., Centroidal voronoi tessellations: applications and algorithms, SIAM Rev., 41, 4, 637-676 (1999) · Zbl 0983.65021
[30] Du, Q.; Emelianenko, M., Acceleration schemes for computing centroidal voronoi tessellations, Numer. Linear Algebra Appl., 13, 2-3, 173 (2006) · Zbl 1174.05323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.