×

Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method. (English) Zbl 1398.74243

Summary: In this study, a micromechanical model is presented to study the combined normal, shear and thermal loading of unidirectional (UD) fiber reinforced composites. An appropriate truly meshless method based on the integral form of equilibrium equations is also developed. This meshless method formulated for the generalized plane strain assumption and employed for solution of the governing partial differential equations of the problem. The solution domain includes a representative volume element (RVE) consists of a fiber surrounded by corresponding matrix in a square array arrangement. A direct interpolation method is employed to enforce the appropriate periodic boundary conditions for the combined thermal, transverse shear and normal loading. The fully bonded fiber-matrix interface condition is considered and the displacement continuity and traction reciprocity are imposed to the fiber-matrix interface. Predictions show excellent agreement with the available experimental, analytical and finite element studies. Comparison of the CPU time between presented method and the conventional meshless local Petrov-Galerkin (MLPG) shows significant reduction of the computational time. The results of this study also revealed that the presented model could provide highly accurate predictions with relatively small number of nodes and less computational time without the complexity of mesh generation.

MSC:

74M25 Micromechanics of solids
74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
74B05 Classical linear elasticity
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Roy Soc A 241: 376–396 · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[2] Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13: 213–222 · doi:10.1016/0022-5096(65)90010-4
[3] Hashin Z, Rosen BW (1964) The elastic module of fiber-reinforced materials. J Appl Mech 31E: 223–232
[4] Aboudi J (1989) Micromechanical analysis of composites by the method of cells. Appl Mech Rev 42: 193–221 · doi:10.1115/1.3152428
[5] Nimmer RP (1990) Fiber–matrix interface effects in the presence of thermally induced residual stress. J Comp Tech and Res 12: 65–75 · doi:10.1520/CTR10181J
[6] Robertson DD, Mall S (1993) Micromechanical relations for fiber-reinforced composites using the free transverse shear approach. J Comp Tech and Res 15: 181–192 · doi:10.1520/CTR10368J
[7] Wenbin Yu, Tian T (2007) Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct 44: 3738–3755 · Zbl 1144.74033 · doi:10.1016/j.ijsolstr.2006.10.020
[8] Adams DF (1974) Practical problems associated with the application of the finite element method to composite material micromechanical analyses. Fibre Sci Technol 7(2): 111–122 · doi:10.1016/0015-0568(74)90023-2
[9] Adams DF, Crane DA (1984) Combined loading micromechanical analysis of a unidirectional composite. Composites 15(3): 181–192 · doi:10.1016/0010-4361(84)90273-8
[10] Nimmer RP, Bankert RJ, Russell ES, Smith GA, Wright PK (1991) Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites. J Comp Tech Res 13(1): 3–13 · doi:10.1520/CTR10068J
[11] Wisnom MR (1990) Factors affecting the transverse tensile strength of unidirectional continuous Silicon Carbide fiber reinforced 6061Aluminum. J Comp Mater 24(7): 707–726 · doi:10.1177/002199839002400702
[12] Shaw LL, Miracle DB (1996) Effects of an interfacial region on the transverse behavior of metal-matrix composites-A finite element analysis. Acta Mater 44(5): 2043–2055 · doi:10.1016/1359-6454(95)00270-7
[13] Zahl DB, McMeeking MR (1991) The influence of residual stress on the yielding of metal matrix composites. Acta Metall Mater 39(6): 1117–1122 · doi:10.1016/0956-7151(91)90199-B
[14] Aghdam MM, Smith DJ, Pavier MJ (2000) Finite element micro-mechanical modeling of yield and collapse behaviour of metal matrix composites. J Mech Phys Solids 48(3): 499–528 · Zbl 1087.74627 · doi:10.1016/S0022-5096(99)00041-1
[15] Nedele MR, Wisnom MR (1994) Finite element micromechanical modeling of a unidirectional composite subjected to axial shear loading. Composites 25: 263–272 · doi:10.1016/0010-4361(94)90218-6
[16] Brockenbrough JR, Suresh S, Wienecke HA (1991) Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metall Mater 5: 735–752
[17] Naik RA, Crews JH Jr (1993) Micromechanical analysis of fiber–matrix interface stresses under thermo mechanical loadings. Composite materials: testing and design (vol II), ASTM STP 1206, American Society for Testing and Materials, Philadelphia, pp 205–219
[18] Sun CT, Vaidya RS (1996) Prediction of composite properties from a representative volume element. Comp Sci Tech 56: 171–179 · doi:10.1016/0266-3538(95)00141-7
[19] Aghdam MM, Pavier MJ, Smith DJ (1998) Micromechanical modeling of metal matrix composites subjected to combined thermal and Shear loading. In: Proceedings of the Sixth International Conference on Computer Methods in Composite Materials (CADCOMP98), Montreal, pp 321–330
[20] Adams DF, Doner DR (1967) Longitudinal shear loading of a unidirectional composite. J Comp Mater 1: 4–17
[21] Eischen JW, Torquato S (1993) Determining elastic behavior of composites by the boundary element method. J Appl Phys 74: 159–170 · doi:10.1063/1.354132
[22] Nayroles B, Touzot B, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318 · Zbl 0764.65068 · doi:10.1007/BF00364252
[23] Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37: 229–256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[24] Liu WK, Chen Y, Chang CT, Belytschko T (1996) Advances in multiple scale kernel particle methods. Comput Mech 18: 73–111 · Zbl 0868.73091 · doi:10.1007/BF00350529
[25] Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22: 117–127 · Zbl 0932.76067 · doi:10.1007/s004660050346
[26] Atluri SN, Zhu T (2000) The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elastostatics. Comput Mech 25: 169–179 · Zbl 0976.74078 · doi:10.1007/s004660050467
[27] Long SY, Liu KY, Hu DA (2006) A new meshless method based on MLPG for elastic dynamic problems. Eng Anal Bound Elem 30: 43–48 · Zbl 1195.74291 · doi:10.1016/j.enganabound.2005.09.001
[28] Gu YT, Liu GR (2001) A meshless local Petrov–Galerkin (MLPG) formulation for static and free vibration analysis of thin plates. Comput Model Eng Sci 2(4): 463–476 · Zbl 1102.74310
[29] Belinha J, Dinis LMJS (2006) Analysis of plates and laminates using the element-free Galerkin method. Comput Struct 84: 1547–1559 · doi:10.1016/j.compstruc.2006.01.013
[30] Belytschko T, Lu YY, Gu L (1995) Crack propagation by element free Galerkin methods. Eng Frac Mech 51(2): 211–222 · doi:10.1016/0013-7944(94)00153-9
[31] Ching HK, Batra RC (2001) Determination of crack tip fields in linear elastostatics by the meshless local Petrov–Galerkin (MLPG) method. Comput Model Eng Sci 2(2): 273–290
[32] Lin H, Atluri SN (2000) Meshless local Petrov–Galerkin (MLPG) method for convection-diffusion problems. Comput Model Eng Sci 1: 45–60
[33] Lin H, Atluri SN (2001) The meshless local Petrov–Galerkin (MLPG) method for solving incompressible Navier–Stokes equations. Comput Model Eng Sci 2: 117–142
[34] Atluri SN, Shen S (2002) The Meshless Local Petrov–Galerkin (MLPG) Method. Tech. Sci. Press, Norcross · Zbl 1012.65116
[35] Dang TD, Sankar BV (2007) Meshless Local Petrov–Galerkin formulation for problems in composite micromechanics. AIAA J 45(4): 912–921 · doi:10.2514/1.23434
[36] Dang TD, Sankar BV (2008) Meshless Local Petrov-Galerkin Micromechanical Analysis of Periodic Composites Including Shear Loadings. Comput Model Eng Sci 26(3): 169–187 · Zbl 1232.74017
[37] ANSYS documentation (2002) Swanson Analysis Systems, Inc., Houston, PA
[38] Sun CT, Chen JL (1990) A micromechanical model for plastic behavior of fibrous composites. Comput Sci Technol 40: 115–129 · doi:10.1016/0266-3538(91)90092-4
[39] Kenaga D, Doyle JF, Sun CT (1987) The characterization of boron/aluminum in the nonlinear range as an orthotropic elastic plastic material. J Camp Mater 27: 516 · doi:10.1177/002199838702100603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.