Novak, Tina; Žerovnik, Janez Real forms of the complex Neumann system: a method for finding real roots of polynomial \(U_{\mathcal{S}} ( \lambda )\). (English) Zbl 07309635 J. Comput. Appl. Math. 390, Article ID 113362, 14 p. (2021). MSC: 37J39 37J35 15A06 26C10 PDF BibTeX XML Cite \textit{T. Novak} and \textit{J. Žerovnik}, J. Comput. Appl. Math. 390, Article ID 113362, 14 p. (2021; Zbl 07309635) Full Text: DOI
Agafonov, Sergey I. Quadratic integrals of geodesic flow, webs, and integrable billiards. (English) Zbl 07303901 J. Geom. Phys. 161, Article ID 104041, 8 p. (2021). MSC: 53A60 37J05 37D50 PDF BibTeX XML Cite \textit{S. I. Agafonov}, J. Geom. Phys. 161, Article ID 104041, 8 p. (2021; Zbl 07303901) Full Text: DOI
Gasiorek, Sean; Radnović, Milena Pseudo-Euclidean billiards within confocal curves on the hyperboloid of one sheet. (English) Zbl 07303896 J. Geom. Phys. 161, Article ID 104032, 22 p. (2021). MSC: 70H06 70H12 14H70 37J35 37J38 37J39 37J46 PDF BibTeX XML Cite \textit{S. Gasiorek} and \textit{M. Radnović}, J. Geom. Phys. 161, Article ID 104032, 22 p. (2021; Zbl 07303896) Full Text: DOI
Gernandt, H.; Haller, F. E.; Reis, T.; Schaft, A. J. van der Port-Hamiltonian formulation of nonlinear electrical circuits. (English) Zbl 07299392 J. Geom. Phys. 159, Article ID 103959, 16 p. (2021). MSC: 34A09 37J39 53D12 93C10 94C15 PDF BibTeX XML Cite \textit{H. Gernandt} et al., J. Geom. Phys. 159, Article ID 103959, 16 p. (2021; Zbl 07299392) Full Text: DOI
Pelayo, Álvaro Symplectic invariants of semitoric systems and the inverse problem for quantum systems. (English) Zbl 07298854 Indag. Math., New Ser. 32, No. 1, 246-274 (2021). MSC: 37J39 37J35 53D05 81U15 PDF BibTeX XML Cite \textit{Á. Pelayo}, Indag. Math., New Ser. 32, No. 1, 246--274 (2021; Zbl 07298854) Full Text: DOI
Arcostanzo, Marc The \(C^0\) integrability of symplectic twist maps without conjugate points. (English) Zbl 07282573 Ergodic Theory Dyn. Syst. 41, No. 1, 48-65 (2021). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37J11 37J35 37J40 37E40 53D22 PDF BibTeX XML Cite \textit{M. Arcostanzo}, Ergodic Theory Dyn. Syst. 41, No. 1, 48--65 (2021; Zbl 07282573) Full Text: DOI
Álvarez-Gavela, Daniel; Igusa, Kiyoshi A Legendrian Turaev torsion via generating families. (Torsion de Turaev legendrienne des fonctions génératrices.) (English. French summary) Zbl 07282222 J. Éc. Polytech., Math. 8, 57-119 (2021). Reviewer: Andrew Bucki (Edmond) MSC: 57R17 57K12 19J10 PDF BibTeX XML Cite \textit{D. Álvarez-Gavela} and \textit{K. Igusa}, J. Éc. Polytech., Math. 8, 57--119 (2021; Zbl 07282222) Full Text: DOI
Li, Tian-Jun; Mak, Cheuk Yu The Kodaira dimension of contact 3-manifolds and geography of symplectic fillings. (English) Zbl 07313490 Int. Math. Res. Not. 2020, No. 17, 5428-5449 (2020). MSC: 53D35 57K33 57K43 57R17 PDF BibTeX XML Cite \textit{T.-J. Li} and \textit{C. Y. Mak}, Int. Math. Res. Not. 2020, No. 17, 5428--5449 (2020; Zbl 07313490) Full Text: DOI
Capriotti, Santiago; Gaset, Jordi; Román-Roy, Narciso; Salomone, L. Griffiths variational multisymplectic formulation for Lovelock gravity. (English) Zbl 07309285 Gen. Relativ. Gravitation 52, No. 8, Paper No. 74, 45 p. (2020). MSC: 49S05 70S05 83D05 35Q75 35Q76 53D42 55R10 PDF BibTeX XML Cite \textit{S. Capriotti} et al., Gen. Relativ. Gravitation 52, No. 8, Paper No. 74, 45 p. (2020; Zbl 07309285) Full Text: DOI
Fukuda, T.; Janeczko, S. Poisson-Lie algebras and singular symplectic forms associated to corank 1 type singularities. (English. Russian original) Zbl 07308457 Proc. Steklov Inst. Math. 311, 129-151 (2020); translation from Tr. Mat. Inst. Steklova 311, 140-163 (2020). MSC: 53D17 37C 37J39 PDF BibTeX XML Cite \textit{T. Fukuda} and \textit{S. Janeczko}, Proc. Steklov Inst. Math. 311, 129--151 (2020; Zbl 07308457); translation from Tr. Mat. Inst. Steklova 311, 140--163 (2020) Full Text: DOI
Lazarev, Oleg Simplifying Weinstein Morse functions. (English) Zbl 07305775 Geom. Topol. 24, No. 5, 2603-2646 (2020). MSC: 57R17 53D37 53D40 57R80 PDF BibTeX XML Cite \textit{O. Lazarev}, Geom. Topol. 24, No. 5, 2603--2646 (2020; Zbl 07305775) Full Text: DOI
del Pino, Álvaro; Vogel, Thomas The Engel-Lutz twist and overtwisted Engel structures. (English) Zbl 07305773 Geom. Topol. 24, No. 5, 2471-2546 (2020). MSC: 57R17 57K33 53D 58A30 PDF BibTeX XML Cite \textit{Á. del Pino} and \textit{T. Vogel}, Geom. Topol. 24, No. 5, 2471--2546 (2020; Zbl 07305773) Full Text: DOI
Cattaneo, Alberto S.; Moshayedi, Nima Introduction to the BV-BFV formalism. (English) Zbl 1453.81056 Rev. Math. Phys. 32, No. 9, Article ID 2030006, 67 p. (2020). MSC: 81T70 81T20 53D55 58A50 81Q30 PDF BibTeX XML Cite \textit{A. S. Cattaneo} and \textit{N. Moshayedi}, Rev. Math. Phys. 32, No. 9, Article ID 2030006, 67 p. (2020; Zbl 1453.81056) Full Text: DOI
Borot, Gaëtan Topological recursion and geometry. (English) Zbl 07305676 Rev. Math. Phys. 32, No. 10, Article ID 2030007, 50 p. (2020). MSC: 81T45 81T40 14H81 14N35 32G15 57R56 PDF BibTeX XML Cite \textit{G. Borot}, Rev. Math. Phys. 32, No. 10, Article ID 2030007, 50 p. (2020; Zbl 07305676) Full Text: DOI
Geiges, Hansjörg; Onaran, Sinem Legendrian Hopf links. (English) Zbl 07304822 Q. J. Math. 71, No. 4, 1419-1459 (2020). MSC: 57K10 57R17 53D05 PDF BibTeX XML Cite \textit{H. Geiges} and \textit{S. Onaran}, Q. J. Math. 71, No. 4, 1419--1459 (2020; Zbl 07304822) Full Text: DOI
Saha, Kuldeep On open book embedding of contact manifolds in the standard contact sphere. (English) Zbl 07303607 Can. Math. Bull. 63, No. 4, 755-770 (2020). MSC: 53D10 53D15 57R17 PDF BibTeX XML Cite \textit{K. Saha}, Can. Math. Bull. 63, No. 4, 755--770 (2020; Zbl 07303607) Full Text: DOI
Lyu, Wenyang; Naik, Shibabrat; Wiggins, Stephen The role of depth and flatness of a potential energy surface in chemical reaction dynamics. (English) Zbl 07300968 Regul. Chaotic Dyn. 25, No. 5, 453-475 (2020). MSC: 37J39 34C23 70H05 37G05 53Z15 80A32 92E20 PDF BibTeX XML Cite \textit{W. Lyu} et al., Regul. Chaotic Dyn. 25, No. 5, 453--475 (2020; Zbl 07300968) Full Text: DOI
Dhont, Guillaume; Iwai, Toshihiro; Zhilinskií, Boris I. A study of energy band rearrangement in isolated molecules by means of the Dirac oscillator approximation. (English) Zbl 07300967 Regul. Chaotic Dyn. 25, No. 5, 424-452 (2020). MSC: 37J39 37N20 53D20 58K65 81Q70 81V55 70G45 70H33 PDF BibTeX XML Cite \textit{G. Dhont} et al., Regul. Chaotic Dyn. 25, No. 5, 424--452 (2020; Zbl 07300967) Full Text: DOI
Román-Roy, Narciso A summary on symmetries and conserved quantities of autonomous Hamiltonian systems. (English) Zbl 07300139 J. Geom. Mech. 12, No. 3, 541-551 (2020). MSC: 37J06 37J35 37J39 70H33 53D05 70S05 70S10 PDF BibTeX XML Cite \textit{N. Román-Roy}, J. Geom. Mech. 12, No. 3, 541--551 (2020; Zbl 07300139) Full Text: DOI
Hohloch, Sonja Characterization of toric systems via transport costs. (English) Zbl 07300135 J. Geom. Mech. 12, No. 3, 447-454 (2020). MSC: 37J35 37J39 49K21 49Q10 53D20 PDF BibTeX XML Cite \textit{S. Hohloch}, J. Geom. Mech. 12, No. 3, 447--454 (2020; Zbl 07300135) Full Text: DOI
Cruz, Inês; Mena-Matos, Helena; Sousa-Dias, Esmeralda The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps. (English) Zbl 07300130 J. Geom. Mech. 12, No. 3, 363-375 (2020). MSC: 53D17 37J11 57R30 37J06 39A20 13F60 14E05 PDF BibTeX XML Cite \textit{I. Cruz} et al., J. Geom. Mech. 12, No. 3, 363--375 (2020; Zbl 07300130) Full Text: DOI
Bauer, Sean; Petrov, Nikola P. Existence of KAM tori for presymplectic vector fields. (English) Zbl 07298206 Electron. J. Differ. Equ. 2020, Paper No. 126, 26 p. (2020). MSC: 37J40 37J39 70K43 70H08 PDF BibTeX XML Cite \textit{S. Bauer} and \textit{N. P. Petrov}, Electron. J. Differ. Equ. 2020, Paper No. 126, 26 p. (2020; Zbl 07298206) Full Text: Link
Chen, Weimin On a class of symplectic 4-orbifolds with vanishing canonical class. (English) Zbl 07298116 J. Gökova Geom. Topol. GGT 14, 55-90 (2020). MSC: 57R18 57R17 57S17 53D 57K40 PDF BibTeX XML Cite \textit{W. Chen}, J. Gökova Geom. Topol. GGT 14, 55--90 (2020; Zbl 07298116) Full Text: Link
Chen, Weimin Finite group actions on symplectic Calabi-Yau 4-manifolds with \(b_1>0\). (English) Zbl 07298115 J. Gökova Geom. Topol. GGT 14, 1-54 (2020). MSC: 57K40 57M60 57S17 53D 57R55 57R17 PDF BibTeX XML Cite \textit{W. Chen}, J. Gökova Geom. Topol. GGT 14, 1--54 (2020; Zbl 07298115) Full Text: Link
Karshon, Yael; Tolman, Susan Topology of complexity one quotients. (English) Zbl 07291155 Pac. J. Math. 308, No. 2, 333-346 (2020). Reviewer: Andrea Galasso (Taipei) MSC: 53D20 PDF BibTeX XML Cite \textit{Y. Karshon} and \textit{S. Tolman}, Pac. J. Math. 308, No. 2, 333--346 (2020; Zbl 07291155) Full Text: DOI
Funar, Louis; Pitsch, Wolfgang The Schur multiplier of finite symplectic groups. (Multiplicateur de Schur des groupes symplectiques finis.) (English) Zbl 07290303 Bull. Soc. Math. Fr. 148, No. 3, 515-527 (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 57K20 57M50 55N25 19C09 20F38 PDF BibTeX XML Cite \textit{L. Funar} and \textit{W. Pitsch}, Bull. Soc. Math. Fr. 148, No. 3, 515--527 (2020; Zbl 07290303) Full Text: DOI
Altunöz, Tülin The number of singular fibers in hyperelliptic Lefschetz fibrations. (English) Zbl 07290152 J. Math. Soc. Japan 72, No. 4, 1309-1325 (2020). MSC: 57K40 57K20 20F38 57K43 57R17 PDF BibTeX XML Cite \textit{T. Altunöz}, J. Math. Soc. Japan 72, No. 4, 1309--1325 (2020; Zbl 07290152) Full Text: DOI Euclid
Mak, Cheuk Yu; Ruddat, Helge Tropically constructed Lagrangians in mirror quintic threefolds. (English) Zbl 07289293 Forum Math. Sigma 8, Paper No. e58, 55 p. (2020). MSC: 14J32 14T20 14T90 53D37 57R17 53D12 PDF BibTeX XML Cite \textit{C. Y. Mak} and \textit{H. Ruddat}, Forum Math. Sigma 8, Paper No. e58, 55 p. (2020; Zbl 07289293) Full Text: DOI
Borot, Gaëtan; Garcia-Failde, Elba Simple maps, Hurwitz numbers, and topological recursion. (English) Zbl 07286852 Commun. Math. Phys. 380, No. 2, 581-654 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 37E15 05C30 05C10 53D42 15B52 57K20 PDF BibTeX XML Cite \textit{G. Borot} and \textit{E. Garcia-Failde}, Commun. Math. Phys. 380, No. 2, 581--654 (2020; Zbl 07286852) Full Text: DOI
Akhmedov, Anar; Monden, Naoyuki Genus \(2\) Lefschetz fibrations with \(b^+_2=1\) and \(c_1^2=1,2\). (English) Zbl 07286670 Kyoto J. Math. 60, No. 4, 1419-1451 (2020). MSC: 57K43 57R55 57R17 PDF BibTeX XML Cite \textit{A. Akhmedov} and \textit{N. Monden}, Kyoto J. Math. 60, No. 4, 1419--1451 (2020; Zbl 07286670) Full Text: DOI Euclid
Wolbert, Seth Symplectic toric stratified spaces with isolated singularities. (English) Zbl 07285791 J. Symplectic Geom. 18, No. 5, 1391-1473 (2020). MSC: 53D05 57N80 58A35 14M25 57S12 PDF BibTeX XML Cite \textit{S. Wolbert}, J. Symplectic Geom. 18, No. 5, 1391--1473 (2020; Zbl 07285791) Full Text: DOI
Shevchishin, Vsevolod; Smirnov, Gleb Elliptic diffeomorphisms of symplectic \(4\)-manifolds. (English) Zbl 07285788 J. Symplectic Geom. 18, No. 5, 1247-1283 (2020). MSC: 53D35 58D05 57R17 PDF BibTeX XML Cite \textit{V. Shevchishin} and \textit{G. Smirnov}, J. Symplectic Geom. 18, No. 5, 1247--1283 (2020; Zbl 07285788) Full Text: DOI
Hind, Richard K.; Kerman, Ely \(J\)-holomorphic cylinders between ellipsoids in dimension four. (English) Zbl 07285787 J. Symplectic Geom. 18, No. 5, 1221-1245 (2020). Reviewer: Marc Kegel (Berlin) MSC: 53D35 57R90 57R17 32Q65 PDF BibTeX XML Cite \textit{R. K. Hind} and \textit{E. Kerman}, J. Symplectic Geom. 18, No. 5, 1221--1245 (2020; Zbl 07285787) Full Text: DOI
Munteanu, Mihai Noncontractible loops of symplectic embeddings between convex toric domains. (English) Zbl 07285785 J. Symplectic Geom. 18, No. 4, 1169-1196 (2020). MSC: 53D35 57S12 57R17 PDF BibTeX XML Cite \textit{M. Munteanu}, J. Symplectic Geom. 18, No. 4, 1169--1196 (2020; Zbl 07285785) Full Text: DOI
Ganor, Yaniv A homotopical viewpoint at the Poisson bracket invariants for tuples of sets. (English) Zbl 07285779 J. Symplectic Geom. 18, No. 4, 995-1026 (2020). MSC: 53D17 53D05 37J05 PDF BibTeX XML Cite \textit{Y. Ganor}, J. Symplectic Geom. 18, No. 4, 995--1026 (2020; Zbl 07285779) Full Text: DOI
Starkston, Laura A new approach to the symplectic isotopy problem. (English) Zbl 07285746 J. Symplectic Geom. 18, No. 3, 939-960 (2020). MSC: 53D35 53D05 57R17 14J42 PDF BibTeX XML Cite \textit{L. Starkston}, J. Symplectic Geom. 18, No. 3, 939--960 (2020; Zbl 07285746) Full Text: DOI
Giroux, Emmanuel Ideal Liouville domains, a cool gadget. (English) Zbl 07285740 J. Symplectic Geom. 18, No. 3, 769-790 (2020). MSC: 53D05 53D10 57R17 PDF BibTeX XML Cite \textit{E. Giroux}, J. Symplectic Geom. 18, No. 3, 769--790 (2020; Zbl 07285740) Full Text: DOI
Denisova, N. V. On momentum-polynomial integrals of a reversible Hamiltonian system of a certain form. (English. Russian original) Zbl 07282927 Proc. Steklov Inst. Math. 310, 131-136 (2020); translation from Tr. Mat. Inst. Steklova 310, 143-148 (2020). MSC: 37J35 37J39 37E30 PDF BibTeX XML Cite \textit{N. V. Denisova}, Proc. Steklov Inst. Math. 310, 131--136 (2020; Zbl 07282927); translation from Tr. Mat. Inst. Steklova 310, 143--148 (2020) Full Text: DOI
Owens, Brendan Smooth, nonsymplectic embeddings of rational balls in the complex projective plane. (English) Zbl 07277648 Q. J. Math. 71, No. 3, 997-1007 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 53A20 53D05 57M12 57R40 PDF BibTeX XML Cite \textit{B. Owens}, Q. J. Math. 71, No. 3, 997--1007 (2020; Zbl 07277648) Full Text: DOI
Nikolaenko, Stanislav S. Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds. (English. Russian original) Zbl 07276775 Sb. Math. 211, No. 8, 1127-1158 (2020); translation from Mat. Sb. 211, No. 8, 68-101 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37J20 37J35 37C15 37G10 58K45 70H06 PDF BibTeX XML Cite \textit{S. S. Nikolaenko}, Sb. Math. 211, No. 8, 1127--1158 (2020; Zbl 07276775); translation from Mat. Sb. 211, No. 8, 68--101 (2020) Full Text: DOI
Hendricks, Kristen; Lipshitz, Robert; Sarkar, Sucharit Corrigendum to: “A flexible construction of equivariant Floer homology and applications”. (English) Zbl 1453.53081 J. Topol. 13, No. 3, 1317-1331 (2020). MSC: 53D40 57R58 57R91 57K10 PDF BibTeX XML Cite \textit{K. Hendricks} et al., J. Topol. 13, No. 3, 1317--1331 (2020; Zbl 1453.53081) Full Text: DOI
Haller, Stefan; Vizman, Cornelia Nonlinear flag manifolds as coadjoint orbits. (English) Zbl 07276373 Ann. Global Anal. Geom. 58, No. 4, 385-413 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 37J39 58D10 53C30 53D20 PDF BibTeX XML Cite \textit{S. Haller} and \textit{C. Vizman}, Ann. Global Anal. Geom. 58, No. 4, 385--413 (2020; Zbl 07276373) Full Text: DOI
Awane, Azzouz Polarized symplectic structures. (English) Zbl 07276240 Balkan J. Geom. Appl. 25, No. 1, 1-18 (2020). MSC: 53D05 53D12 53D17 37J39 PDF BibTeX XML Cite \textit{A. Awane}, Balkan J. Geom. Appl. 25, No. 1, 1--18 (2020; Zbl 07276240) Full Text: Link
Mori, Atsuhide A concurrence theorem for alpha-connections on the space of t-distributions and its application. (English) Zbl 07276073 Hokkaido Math. J. 49, No. 2, 201-214 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 53B12 57R17 57R30 62F15 62B11 PDF BibTeX XML Cite \textit{A. Mori}, Hokkaido Math. J. 49, No. 2, 201--214 (2020; Zbl 07276073) Full Text: DOI Euclid
Polterovich, Leonid; Rosen, Daniel; Samvelyan, Karina; Zhang, Jun Topological persistence in geometry and analysis. (English) Zbl 07275267 University Lecture Series 74. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5495-1/pbk; 978-1-4704-5679-5/ebook). xi, 128 p. (2020). MSC: 55-01 55-02 55N31 58Cxx 53Dxx PDF BibTeX XML Cite \textit{L. Polterovich} et al., Topological persistence in geometry and analysis. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 07275267)
Błaszak, Maciej; Marciniak, Krzysztof Stäckel transform of Lax equations. (English) Zbl 07274652 Stud. Appl. Math. 145, No. 2, 179-196 (2020). MSC: 37J39 37J35 PDF BibTeX XML Cite \textit{M. Błaszak} and \textit{K. Marciniak}, Stud. Appl. Math. 145, No. 2, 179--196 (2020; Zbl 07274652) Full Text: DOI
Gidea, Marian; de la Llave, Rafael; Seara, Tere M. A general mechanism of instability in Hamiltonian systems: skipping along a normally hyperbolic invariant manifold. (English) Zbl 07273497 Discrete Contin. Dyn. Syst. 40, No. 12, 6795-6813 (2020). MSC: 37J25 37J39 37J06 70H14 70K20 70K50 PDF BibTeX XML Cite \textit{M. Gidea} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6795--6813 (2020; Zbl 07273497) Full Text: DOI
Biasco, Luca; Chierchia, Luigi On the measure of KAM tori in two degrees of freedom. (English) Zbl 07273490 Discrete Contin. Dyn. Syst. 40, No. 12, 6635-6648 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J40 37J39 37J35 70H08 70K43 PDF BibTeX XML Cite \textit{L. Biasco} and \textit{L. Chierchia}, Discrete Contin. Dyn. Syst. 40, No. 12, 6635--6648 (2020; Zbl 07273490) Full Text: DOI
Knauf, Andreas; Martynchuk, Nikolay Topology change of level sets in Morse theory. (English) Zbl 07271413 Ark. Mat. 58, No. 2, 333-356 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37N05 55R25 57N65 57R65 58E05 70F07 70F10 70H33 PDF BibTeX XML Cite \textit{A. Knauf} and \textit{N. Martynchuk}, Ark. Mat. 58, No. 2, 333--356 (2020; Zbl 07271413) Full Text: DOI
Chiang, River; Kessler, Liat Homologically trivial symplectic cyclic actions need not extend to Hamiltonian circle actions. (English) Zbl 1451.53112 J. Topol. Anal. 12, No. 4, 1047-1071 (2020). MSC: 53D35 53D20 57R17 57S15 PDF BibTeX XML Cite \textit{R. Chiang} and \textit{L. Kessler}, J. Topol. Anal. 12, No. 4, 1047--1071 (2020; Zbl 1451.53112) Full Text: DOI
Chassé, Jean-Philippe Coisotropic characteristic classes. (English. French summary) Zbl 1451.57014 Ann. Math. Qué. 44, No. 2, 393-400 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 57R17 57R42 57R20 PDF BibTeX XML Cite \textit{J.-P. Chassé}, Ann. Math. Qué. 44, No. 2, 393--400 (2020; Zbl 1451.57014) Full Text: DOI
Nariman, Sam On the moduli space of flat symplectic surface bundles. (English) Zbl 07269228 J. Differ. Geom. 116, No. 2, 349-391 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 53D35 58D27 55R35 55P35 57R50 57R20 PDF BibTeX XML Cite \textit{S. Nariman}, J. Differ. Geom. 116, No. 2, 349--391 (2020; Zbl 07269228) Full Text: DOI Euclid
Benedetti, Gabriele; Ritter, Alexander F. Invariance of symplectic cohomology and twisted cotangent bundles over surfaces. (English) Zbl 07268554 Int. J. Math. 31, No. 9, Article ID 2050070, 56 p. (2020). MSC: 53D35 57R17 55N99 PDF BibTeX XML Cite \textit{G. Benedetti} and \textit{A. F. Ritter}, Int. J. Math. 31, No. 9, Article ID 2050070, 56 p. (2020; Zbl 07268554) Full Text: DOI
Gromov, Misha Morse spectra, homology measures, spaces of cycles and parametric packing problems. (English) Zbl 07264004 Thurston, Dylan P. (ed.), What’s next? The mathematical legacy of William P. Thurston. Princeton, NJ: Princeton University Press (ISBN 978-0-691-16776-3/hbk; 978-0-691-16777-0/pbk; 978-0-691-18589-7/ebook). Annals of Mathematics Studies 205, 141-205 (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 53C23 53C55 53D35 57Z05 28A78 53Z10 PDF BibTeX XML Cite \textit{M. Gromov}, Ann. Math. Stud. 205, 141--205 (2020; Zbl 07264004)
Falqui, Gregorio; Mencattini, I.; Ortenzi, Giovanni; Pedroni, Marco Poisson quasi-Nijenhuis manifolds and the Toda system. (English) Zbl 1453.37057 Math. Phys. Anal. Geom. 23, No. 3, Paper No. 26, 17 p. (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J35 37J39 37J06 53D17 70H06 PDF BibTeX XML Cite \textit{G. Falqui} et al., Math. Phys. Anal. Geom. 23, No. 3, Paper No. 26, 17 p. (2020; Zbl 1453.37057) Full Text: DOI
Lambert-Cole, Peter Bridge trisections in \(\mathbb{CP}^2\) and the Thom conjecture. (English) Zbl 07256611 Geom. Topol. 24, No. 3, 1571-1614 (2020). MSC: 57K40 57R17 57R40 PDF BibTeX XML Cite \textit{P. Lambert-Cole}, Geom. Topol. 24, No. 3, 1571--1614 (2020; Zbl 07256611) Full Text: DOI
Conway, James; Min, Hyunki Classification of tight contact structures on surgeries on the figure-eight knot. (English) Zbl 07256609 Geom. Topol. 24, No. 3, 1457-1517 (2020). MSC: 57R17 57K33 PDF BibTeX XML Cite \textit{J. Conway} and \textit{H. Min}, Geom. Topol. 24, No. 3, 1457--1517 (2020; Zbl 07256609) Full Text: DOI
Wilkins, Nicholas A construction of the quantum Steenrod squares and their algebraic relations. (English) Zbl 07256599 Geom. Topol. 24, No. 2, 885-970 (2020). MSC: 53D45 14N35 55S10 PDF BibTeX XML Cite \textit{N. Wilkins}, Geom. Topol. 24, No. 2, 885--970 (2020; Zbl 07256599) Full Text: DOI
Agapov, S. V. On first integrals of two-dimensional geodesic flows. (English. Russian original) Zbl 1453.37056 Sib. Math. J. 61, No. 4, 563-574 (2020); translation from Sib. Mat. Zh. 61, No. 4, 721-734 (2020). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 37J35 37D40 37J39 53D25 70H06 PDF BibTeX XML Cite \textit{S. V. Agapov}, Sib. Math. J. 61, No. 4, 563--574 (2020; Zbl 1453.37056); translation from Sib. Mat. Zh. 61, No. 4, 721--734 (2020) Full Text: DOI
Fedoseev, D. A.; Fomenko, A. T. Noncompact bifurcations of integrable dynamic systems. (English. Russian original) Zbl 1451.37082 J. Math. Sci., New York 248, No. 6, 810-827 (2020); translation from Fundam. Prikl. Mat. 21, No. 6, 217-243 (2016). MSC: 37J35 37J20 37J39 PDF BibTeX XML Cite \textit{D. A. Fedoseev} and \textit{A. T. Fomenko}, J. Math. Sci., New York 248, No. 6, 810--827 (2020; Zbl 1451.37082); translation from Fundam. Prikl. Mat. 21, No. 6, 217--243 (2016) Full Text: DOI
Thomine, Damien Keplerian shear in ergodic theory. (Le cisaillement Keplérien en théorie ergodique.) (English. French summary) Zbl 1451.37083 Ann. Henri Lebesgue 3, 649-676 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37J35 37A25 70F15 37N05 PDF BibTeX XML Cite \textit{D. Thomine}, Ann. Henri Lebesgue 3, 649--676 (2020; Zbl 1451.37083) Full Text: DOI
Duan, Huagui; Long, Yiming; Zhu, Chaofeng Index iteration theories for periodic orbits: old and new. (English) Zbl 07249026 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111999, 26 p. (2020). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 37J46 37J25 37J11 37J39 37C55 58E05 58E10 PDF BibTeX XML Cite \textit{H. Duan} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111999, 26 p. (2020; Zbl 07249026) Full Text: DOI
Wang, Qiang Wall-crossing structures and application to \(\mathrm{SU}(3)\) Seiberg-Witten integrable systems. (English) Zbl 07248560 J. Geom. Phys. 157, Article ID 103834, 15 p. (2020). MSC: 14J80 14J33 14N35 53D37 PDF BibTeX XML Cite \textit{Q. Wang}, J. Geom. Phys. 157, Article ID 103834, 15 p. (2020; Zbl 07248560) Full Text: DOI
Modin, Klas; Viviani, Milo Lie-Poisson methods for isospectral flows. (English) Zbl 1450.37073 Found. Comput. Math. 20, No. 4, 889-921 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 37M15 65P10 37J35 37J39 53D20 PDF BibTeX XML Cite \textit{K. Modin} and \textit{M. Viviani}, Found. Comput. Math. 20, No. 4, 889--921 (2020; Zbl 1450.37073) Full Text: DOI
Katić, Jelena; Milinković, Darko; Nikolić, Jovana Spectral numbers and manifolds with boundary. (English) Zbl 07243989 Topol. Methods Nonlinear Anal. 55, No. 2, 617-653 (2020). MSC: 53D40 53D12 57R58 57R17 PDF BibTeX XML Cite \textit{J. Katić} et al., Topol. Methods Nonlinear Anal. 55, No. 2, 617--653 (2020; Zbl 07243989) Full Text: DOI Euclid
Saha, Kuldeep Contact and isocontact embedding of \(\pi\)-manifolds. (English) Zbl 1446.53063 Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 52, 16 p. (2020). MSC: 53D10 53D15 57R17 PDF BibTeX XML Cite \textit{K. Saha}, Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 52, 16 p. (2020; Zbl 1446.53063) Full Text: DOI
George, Whitney; Myers, Mark Positive twist knots and the uniform thickness property. (English) Zbl 1447.57003 J. Knot Theory Ramifications 29, No. 8, Article ID 2050058, 14 p. (2020). MSC: 57K10 57R17 53D10 57M50 57K33 PDF BibTeX XML Cite \textit{W. George} and \textit{M. Myers}, J. Knot Theory Ramifications 29, No. 8, Article ID 2050058, 14 p. (2020; Zbl 1447.57003) Full Text: DOI
Enciso, Alberto; Luque, Alejandro; Peralta-Salas, Daniel Beltrami fields with hyperbolic periodic orbits enclosed by knotted invariant tori. (English) Zbl 07243327 Adv. Math. 373, Article ID 107328, 46 p. (2020). MSC: 37J40 37J39 37K55 PDF BibTeX XML Cite \textit{A. Enciso} et al., Adv. Math. 373, Article ID 107328, 46 p. (2020; Zbl 07243327) Full Text: DOI
Wang, Jian Some results of Hamiltonian homeomorphisms on closed aspherical surfaces. (English) Zbl 1453.37037 Adv. Math. 373, Article ID 107307, 46 p. (2020). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 37E30 37E45 37J39 37J51 53D40 58D05 PDF BibTeX XML Cite \textit{J. Wang}, Adv. Math. 373, Article ID 107307, 46 p. (2020; Zbl 1453.37037) Full Text: DOI
Zhou, Zhengyi Quotient theorems in polyfold theory and \(S^1\)-equivariant transversality. (English) Zbl 07242529 Proc. Lond. Math. Soc. (3) 121, No. 5, 1337-1426 (2020). MSC: 58B25 46T99 57R17 53D40 PDF BibTeX XML Cite \textit{Z. Zhou}, Proc. Lond. Math. Soc. (3) 121, No. 5, 1337--1426 (2020; Zbl 07242529) Full Text: DOI
Catanese, Fabrizio; Corvaja, Pietro; Zannier, Umberto Fibred algebraic surfaces and commutators in the symplectic group. (English) Zbl 07242347 J. Algebra 562, 200-228 (2020). MSC: 14D05 14J29 14J80 32S50 32S20 20H99 53D99 PDF BibTeX XML Cite \textit{F. Catanese} et al., J. Algebra 562, 200--228 (2020; Zbl 07242347) Full Text: DOI
Borisov, Alexey V.; Mikishanina, Evgeniya A. Two nonholonomic chaotic systems. II: On the rolling of a nonholonomic bundle of two bodies. (English) Zbl 1450.37060 Regul. Chaotic Dyn. 25, No. 4, 392-400 (2020). MSC: 37J60 37J39 70E55 70F25 70K55 PDF BibTeX XML Cite \textit{A. V. Borisov} and \textit{E. A. Mikishanina}, Regul. Chaotic Dyn. 25, No. 4, 392--400 (2020; Zbl 1450.37060) Full Text: DOI
Acu, Bahar Contact open books and symplectic Lefschetz fibrations (survey). (English) Zbl 1440.57030 Acu, Bahar (ed.) et al., Advances in mathematical sciences. AWM research symposium, Houston, TX, USA, April 6–7, 2019. Cham: Springer. Assoc. Women Math. Ser. 21, 273-285 (2020). MSC: 57R17 53D35 53D10 57-02 53-02 PDF BibTeX XML Cite \textit{B. Acu}, Assoc. Women Math. Ser. 21, 273--285 (2020; Zbl 1440.57030) Full Text: DOI
Choi, Hakho; Park, Jongil A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity. (English) Zbl 1446.57025 Math. Z. 295, No. 3-4, 1183-1204 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 57R17 53D05 14E15 14J17 PDF BibTeX XML Cite \textit{H. Choi} and \textit{J. Park}, Math. Z. 295, No. 3--4, 1183--1204 (2020; Zbl 1446.57025) Full Text: DOI
Arutyunov, Gleb E.; Olivucci, Enrico Hyperbolic spin Ruijsenaars-Schneider model from Poisson reduction. (English. Russian original) Zbl 07236588 Proc. Steklov Inst. Math. 309, 31-45 (2020); translation from Tr. Mat. Inst. Steklova 309, 38-53 (2020). MSC: 37J35 37J39 53D17 53D20 PDF BibTeX XML Cite \textit{G. E. Arutyunov} and \textit{E. Olivucci}, Proc. Steklov Inst. Math. 309, 31--45 (2020; Zbl 07236588); translation from Tr. Mat. Inst. Steklova 309, 38--53 (2020) Full Text: DOI
Lane, Jeremy The geometric structure of symplectic contraction. (English) Zbl 1447.53071 Int. Math. Res. Not. 2020, No. 12, 3521-3539 (2020). MSC: 53D20 37J39 17B08 PDF BibTeX XML Cite \textit{J. Lane}, Int. Math. Res. Not. 2020, No. 12, 3521--3539 (2020; Zbl 1447.53071) Full Text: DOI
Ding, Fan; Li, Youlin; Wu, Zhongtao Contact (+1)-surgeries along Legendrian two-component links. (English) Zbl 1446.57003 Quantum Topol. 11, No. 2, 295-321 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 57K10 57K33 57R17 57R58 PDF BibTeX XML Cite \textit{F. Ding} et al., Quantum Topol. 11, No. 2, 295--321 (2020; Zbl 1446.57003) Full Text: DOI
Asselle, Luca; Mazzucchelli, Marco Waist theorems for Tonelli systems in higher dimensions. (English) Zbl 1450.37057 Manuscr. Math. 163, No. 1-2, 185-199 (2020). Reviewer: Anatoliy K. Prykarpatsky (Kraków) MSC: 37J46 37J51 37J39 37D40 58E10 53C22 PDF BibTeX XML Cite \textit{L. Asselle} and \textit{M. Mazzucchelli}, Manuscr. Math. 163, No. 1--2, 185--199 (2020; Zbl 1450.37057) Full Text: DOI
Vedyushkina, Viktoriya Viktorovna The Liouville foliation of the billiard book modelling the Goryachev-Chaplygin case. (English. Russian original) Zbl 1448.37067 Mosc. Univ. Math. Bull. 75, No. 1, 42-46 (2020); translation from Vestn. Mosk. Univ., Ser. I 75, No. 1, 64-68 (2020). MSC: 37J35 37J39 70E40 PDF BibTeX XML Cite \textit{V. V. Vedyushkina}, Mosc. Univ. Math. Bull. 75, No. 1, 42--46 (2020; Zbl 1448.37067); translation from Vestn. Mosk. Univ., Ser. I 75, No. 1, 64--68 (2020) Full Text: DOI
Yehia, Hamad M.; Hussein, Ashraf M. New families of integrable two-dimensional systems with quartic second integrals. (English) Zbl 1448.37068 Nelineĭn. Din. 16, No. 2, 211-242 (2020). MSC: 37J35 37J39 PDF BibTeX XML Cite \textit{H. M. Yehia} and \textit{A. M. Hussein}, Nelineĭn. Din. 16, No. 2, 211--242 (2020; Zbl 1448.37068) Full Text: DOI MNR
Fernández, Eduardo; Gironella, Fabio A remark on the contactomorphism group of overtwisted contact spheres. (Une remarque sur le groupe des contactomorphismes des sphères de contact vrillées.) (English. French summary) Zbl 1451.57017 C. R., Math., Acad. Sci. Paris 358, No. 2, 189-196 (2020). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 57S05 57R17 58B05 58D05 58D15 PDF BibTeX XML Cite \textit{E. Fernández} and \textit{F. Gironella}, C. R., Math., Acad. Sci. Paris 358, No. 2, 189--196 (2020; Zbl 1451.57017) Full Text: DOI
Echeverria, Mariano Naturality of the contact invariant in monopole Floer homology under strong symplectic cobordisms. (English) Zbl 1445.57011 Algebr. Geom. Topol. 20, No. 4, 1795-1875 (2020). Reviewer: Thilo Kuessner (Augsburg) MSC: 57K33 57R17 57R58 PDF BibTeX XML Cite \textit{M. Echeverria}, Algebr. Geom. Topol. 20, No. 4, 1795--1875 (2020; Zbl 1445.57011) Full Text: DOI
Côté, Laurent On linking of Lagrangian tori in \(\mathbb{R}^4\). (English) Zbl 1451.53113 J. Symplectic Geom. 18, No. 2, 409-462 (2020). Reviewer: Gianluca Bande (Cagliari) MSC: 53D35 57R17 PDF BibTeX XML Cite \textit{L. Côté}, J. Symplectic Geom. 18, No. 2, 409--462 (2020; Zbl 1451.53113) Full Text: DOI
Zhang, Ke On the tangent cones of Aubry sets. (English. French summary) Zbl 1448.37069 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 27-38 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37J51 37J06 37J40 PDF BibTeX XML Cite \textit{K. Zhang}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 27--38 (2020; Zbl 1448.37069) Full Text: DOI
Bakuradze, Malkhaz On vanishing of all fourfold products of the Ray classes in symplectic cobordism. (English) Zbl 1446.55005 Proc. Am. Math. Soc. 148, No. 9, 4107-4115 (2020). MSC: 55N22 55R12 PDF BibTeX XML Cite \textit{M. Bakuradze}, Proc. Am. Math. Soc. 148, No. 9, 4107--4115 (2020; Zbl 1446.55005) Full Text: DOI
Heusener, Michael; Porti, Joan Holomorphic volume forms on representation varieties of surfaces with boundary. (Formes de volume holomorphes sur les variétés de représentations des surfaces à bord.) (English. French summary) Zbl 1443.53049 Ann. Henri Lebesgue 3, 341-380 (2020). MSC: 53D30 57M99 PDF BibTeX XML Cite \textit{M. Heusener} and \textit{J. Porti}, Ann. Henri Lebesgue 3, 341--380 (2020; Zbl 1443.53049) Full Text: DOI
Zapolsky, Frol Quasi-morphisms on contactomorphism groups and Grassmannians of 2-planes. (English) Zbl 1443.53048 Geom. Dedicata 207, 287-309 (2020). MSC: 53D20 53D50 20F38 PDF BibTeX XML Cite \textit{F. Zapolsky}, Geom. Dedicata 207, 287--309 (2020; Zbl 1443.53048) Full Text: DOI
Asselle, Luca; Starostka, Maciej The Palais-Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications. (English) Zbl 07216170 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 113, 28 p. (2020). MSC: 37J39 53D05 53D35 PDF BibTeX XML Cite \textit{L. Asselle} and \textit{M. Starostka}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 113, 28 p. (2020; Zbl 07216170) Full Text: DOI
Ioos, Louis Geometric quantization of Hamiltonian flows and the Gutzwiller trace formula. (English) Zbl 07214313 Lett. Math. Phys. 110, No. 7, 1585-1621 (2020). MSC: 53D50 37C27 32A25 57R17 58J20 PDF BibTeX XML Cite \textit{L. Ioos}, Lett. Math. Phys. 110, No. 7, 1585--1621 (2020; Zbl 07214313) Full Text: DOI
Chanu, Claudia Maria; Rastelli, Giovanni On the extended-Hamiltonian structure of certain superintegrable systems on constant-curvature Riemannian and pseudo-Riemannian surfaces. (English) Zbl 1445.37040 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 052, 16 p. (2020). MSC: 37J35 37J39 70H33 PDF BibTeX XML Cite \textit{C. M. Chanu} and \textit{G. Rastelli}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 052, 16 p. (2020; Zbl 1445.37040) Full Text: DOI
Shamolin, M. V. Integrable seventh and ninth order dynamic systems with dissipation. (English. Russian original) Zbl 1445.37041 J. Math. Sci., New York 244, No. 4, 686-702 (2020); translation from Probl. Mat. Anal. 101, 131-145 (2019). MSC: 37J35 37J39 PDF BibTeX XML Cite \textit{M. V. Shamolin}, J. Math. Sci., New York 244, No. 4, 686--702 (2020; Zbl 1445.37041); translation from Probl. Mat. Anal. 101, 131--145 (2019) Full Text: DOI
Biasco, L.; Chierchia, L. On the topology of nearly-integrable Hamiltonians at simple resonances. (English) Zbl 07211423 Nonlinearity 33, No. 7, 3526-3567 (2020). MSC: 37J39 37J35 37J40 70H08 PDF BibTeX XML Cite \textit{L. Biasco} and \textit{L. Chierchia}, Nonlinearity 33, No. 7, 3526--3567 (2020; Zbl 07211423) Full Text: DOI
Asselle, Luca; Lange, Christian On the rigidity of Zoll magnetic systems on surfaces. (English) Zbl 1444.37050 Nonlinearity 33, No. 7, 3173-3194 (2020). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 37J39 37D40 58E10 78A35 PDF BibTeX XML Cite \textit{L. Asselle} and \textit{C. Lange}, Nonlinearity 33, No. 7, 3173--3194 (2020; Zbl 1444.37050) Full Text: DOI
Jin, Rongrong; Lu, Guangcun Representation formula for symmetrical symplectic capacity and applications. (English) Zbl 07207784 Discrete Contin. Dyn. Syst. 40, No. 8, 4705-4765 (2020). MSC: 53D35 53C23 70H05 37J05 57R17 PDF BibTeX XML Cite \textit{R. Jin} and \textit{G. Lu}, Discrete Contin. Dyn. Syst. 40, No. 8, 4705--4765 (2020; Zbl 07207784) Full Text: DOI
Nguyên, Viêt-Anh Geometric characterization of Lyapunov exponents for Riemann surface laminations. (English) Zbl 1450.37031 J. Geom. Anal. 30, No. 3, 2442-2478 (2020). Reviewer: Vladimir Mityushev (Kraków) MSC: 37D40 37H15 57R30 30F45 53B20 70G45 PDF BibTeX XML Cite \textit{V.-A. Nguyên}, J. Geom. Anal. 30, No. 3, 2442--2478 (2020; Zbl 1450.37031) Full Text: DOI
Valls, Claudia A generalization of the Poincaré compactification for weight-homogeneous polynomials with weight degree \((1, \ell)\). (English) Zbl 1443.37046 Topology Appl. 279, Article ID 107229, 11 p. (2020). MSC: 37J39 34C07 54D35 PDF BibTeX XML Cite \textit{C. Valls}, Topology Appl. 279, Article ID 107229, 11 p. (2020; Zbl 1443.37046) Full Text: DOI
Benson, Dave; Campagnolo, Caterina; Ranicki, Andrew; Rovi, Carmen Signature cocycles on the mapping class group and symplectic groups. (English) Zbl 07206683 J. Pure Appl. Algebra 224, No. 11, Article ID 106400, 48 p. (2020). MSC: 20J06 55R10 20C33 PDF BibTeX XML Cite \textit{D. Benson} et al., J. Pure Appl. Algebra 224, No. 11, Article ID 106400, 48 p. (2020; Zbl 07206683) Full Text: DOI
Conway, James; Etnyre, John B. Contact surgery and symplectic caps. (English) Zbl 1444.57019 Bull. Lond. Math. Soc. 52, No. 2, 379-394 (2020). Reviewer: Thilo Kuessner (Augsburg) MSC: 57R17 PDF BibTeX XML Cite \textit{J. Conway} and \textit{J. B. Etnyre}, Bull. Lond. Math. Soc. 52, No. 2, 379--394 (2020; Zbl 1444.57019) Full Text: DOI
Vedyushkina, Viktoriya V. Integrable billiard systems realize toric foliations on Lens spaces and the 3-torus. (English. Russian original) Zbl 1443.37043 Sb. Math. 211, No. 2, 201-225 (2020); translation from Mat. Sb. 211, No. 2, 46-73 (2020). MSC: 37J35 37J39 37D40 37J20 70E40 PDF BibTeX XML Cite \textit{V. V. Vedyushkina}, Sb. Math. 211, No. 2, 201--225 (2020; Zbl 1443.37043); translation from Mat. Sb. 211, No. 2, 46--73 (2020) Full Text: DOI
Karginova, Ekaterina E. Billiards bounded by arcs of confocal quadrics on the Minkowski plane. (English. Russian original) Zbl 1443.37042 Sb. Math. 211, No. 1, 1-28 (2020); translation from Mat. Sb. 211, No. 1, 3-31 (2020). MSC: 37J35 37J39 37C83 PDF BibTeX XML Cite \textit{E. E. Karginova}, Sb. Math. 211, No. 1, 1--28 (2020; Zbl 1443.37042); translation from Mat. Sb. 211, No. 1, 3--31 (2020) Full Text: DOI