Chen, Xi; Li, Yuwen Superconvergent pseudostress-velocity finite element methods for the Oseen equations. (English) Zbl 07549329 J. Sci. Comput. 92, No. 1, Paper No. 17, 27 p. (2022). MSC: 65N12 65N15 65N30 PDF BibTeX XML Cite \textit{X. Chen} and \textit{Y. Li}, J. Sci. Comput. 92, No. 1, Paper No. 17, 27 p. (2022; Zbl 07549329) Full Text: DOI OpenURL
Wang, Junjun; Li, Meng Superconvergence results for nonlinear Klein-Gordon-Schrödinger equation with backward differential formula finite element method. (English) Zbl 07546711 Comput. Math. Appl. 118, 214-229 (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{J. Wang} and \textit{M. Li}, Comput. Math. Appl. 118, 214--229 (2022; Zbl 07546711) Full Text: DOI OpenURL
Zhao, Lina; Park, Eun-Jae; Kim, Wonjong A staggered cell-centered DG method for the biharmonic Steklov problem on polygonal meshes: a priori and a posteriori analysis. (English) Zbl 07546686 Comput. Math. Appl. 117, 216-228 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{L. Zhao} et al., Comput. Math. Appl. 117, 216--228 (2022; Zbl 07546686) Full Text: DOI OpenURL
Singh, Gautam; Natesan, Srinivasan Superconvergence error estimates of discontinuous Galerkin time stepping for singularly perturbed parabolic problems. (English) Zbl 07540329 Numer. Algorithms 90, No. 3, 1073-1090 (2022). MSC: 65M60 65N30 65M12 65M15 65N50 35K67 35B25 PDF BibTeX XML Cite \textit{G. Singh} and \textit{S. Natesan}, Numer. Algorithms 90, No. 3, 1073--1090 (2022; Zbl 07540329) Full Text: DOI OpenURL
Zhao, R.; Du, W.; Shi, F.; Cao, Y. Recovery based finite difference scheme on unstructured mesh. (English) Zbl 07534436 Appl. Math. Lett. 129, Article ID 107935, 8 p. (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{R. Zhao} et al., Appl. Math. Lett. 129, Article ID 107935, 8 p. (2022; Zbl 07534436) Full Text: DOI OpenURL
Chen, Gang; Cockburn, Bernardo; Singler, John R.; Zhang, Yangwen Superconvergent interpolatory HDG methods for reaction diffusion equations. II: HHO-inspired methods. (English) Zbl 07534229 Commun. Appl. Math. Comput. 4, No. 2, 477-499 (2022). MSC: 65N30 35K58 PDF BibTeX XML Cite \textit{G. Chen} et al., Commun. Appl. Math. Comput. 4, No. 2, 477--499 (2022; Zbl 07534229) Full Text: DOI OpenURL
Baccouch, Mahboub Convergence and superconvergence of the local discontinuous Galerkin method for semilinear second-order elliptic problems on Cartesian grids. (English) Zbl 07534228 Commun. Appl. Math. Comput. 4, No. 2, 437-476 (2022). MSC: 65N12 65N15 65N30 PDF BibTeX XML Cite \textit{M. Baccouch}, Commun. Appl. Math. Comput. 4, No. 2, 437--476 (2022; Zbl 07534228) Full Text: DOI OpenURL
Ryan, Jennifer K. Capitalizing on superconvergence for more accurate multi-resolution discontinuous Galerkin methods. (English) Zbl 07534227 Commun. Appl. Math. Comput. 4, No. 2, 417-436 (2022). MSC: 65M60 PDF BibTeX XML Cite \textit{J. K. Ryan}, Commun. Appl. Math. Comput. 4, No. 2, 417--436 (2022; Zbl 07534227) Full Text: DOI OpenURL
Xie, Shenglan; Zhu, Peng Superconvergence of a WG method for the Stokes equations with continuous pressure. (English) Zbl 07533838 Appl. Numer. Math. 179, 27-38 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{S. Xie} and \textit{P. Zhu}, Appl. Numer. Math. 179, 27--38 (2022; Zbl 07533838) Full Text: DOI OpenURL
Wang, Jianyun; Tian, Zhikun Superconvergence of finite element approximations of the two-dimensional cubic nonlinear Schrödinger equation. (English) Zbl 07528510 Adv. Appl. Math. Mech. 14, No. 3, 652-665 (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Z. Tian}, Adv. Appl. Math. Mech. 14, No. 3, 652--665 (2022; Zbl 07528510) Full Text: DOI OpenURL
Wang, Junjun Superconvergence analysis for a semilinear parabolic equation with BDF-3 finite element method. (English) Zbl 07518208 Appl. Anal. 101, No. 6, 1822-1832 (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Wang}, Appl. Anal. 101, No. 6, 1822--1832 (2022; Zbl 07518208) Full Text: DOI OpenURL
Nahid, Nilofar; Nelakanti, Gnaneshwar Convergence analysis of Galerkin and multi-Galerkin methods for nonlinear-Hammerstein integral equations on the half-line using Laguerre polynomials. (English) Zbl 07513112 Int. J. Comput. Math. 99, No. 4, 808-836 (2022). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{N. Nahid} and \textit{G. Nelakanti}, Int. J. Comput. Math. 99, No. 4, 808--836 (2022; Zbl 07513112) Full Text: DOI OpenURL
Gfrerer, Helmut; Outrata, Jiří V.; Valdman, Jan On the solution of contact problems with Tresca friction by the semismooth* Newton method. (English) Zbl 07511673 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 515-523 (2022). MSC: 74M15 74M10 74S05 PDF BibTeX XML Cite \textit{H. Gfrerer} et al., Lect. Notes Comput. Sci. 13127, 515--523 (2022; Zbl 07511673) Full Text: DOI OpenURL
Xu, Yuan; Zhang, Qiang Superconvergence analysis of the Runge-Kutta discontinuous Galerkin method with upwind-biased numerical flux for two-dimensional linear hyperbolic equation. (English) Zbl 07508617 Commun. Appl. Math. Comput. 4, No. 1, 319-352 (2022). MSC: 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{Q. Zhang}, Commun. Appl. Math. Comput. 4, No. 1, 319--352 (2022; Zbl 07508617) Full Text: DOI OpenURL
Miao, Yuqing; Yan, Jue; Zhong, Xinghui Superconvergence study of the direct discontinuous Galerkin method and its variations for diffusion equations. (English) Zbl 07508611 Commun. Appl. Math. Comput. 4, No. 1, 180-204 (2022). MSC: 65M60 PDF BibTeX XML Cite \textit{Y. Miao} et al., Commun. Appl. Math. Comput. 4, No. 1, 180--204 (2022; Zbl 07508611) Full Text: DOI OpenURL
Shi, Xiangyu; Lu, Linzhang; Wang, Haijie New superconvergence estimates of FEM for time-dependent Joule heating problem. (English) Zbl 07504616 Comput. Math. Appl. 111, 91-97 (2022). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{X. Shi} et al., Comput. Math. Appl. 111, 91--97 (2022; Zbl 07504616) Full Text: DOI OpenURL
Tian, Yan Superconvergence and fast implementation of the barycentric prolate differentiation. (English) Zbl 07503433 J. Comput. Appl. Math. 410, Article ID 114191, 15 p. (2022). MSC: 65D25 65D05 PDF BibTeX XML Cite \textit{Y. Tian}, J. Comput. Appl. Math. 410, Article ID 114191, 15 p. (2022; Zbl 07503433) Full Text: DOI OpenURL
Becher, Simon; Matthies, Gunar Unified analysis for variational time discretizations of higher order and higher regularity applied to non-stiff ODEs. (English) Zbl 1485.65077 Numer. Algorithms 89, No. 4, 1533-1565 (2022). MSC: 65L05 65L20 65L60 PDF BibTeX XML Cite \textit{S. Becher} and \textit{G. Matthies}, Numer. Algorithms 89, No. 4, 1533--1565 (2022; Zbl 1485.65077) Full Text: DOI OpenURL
Li, Xiaoli; Rui, Hongxing Superconvergence of MAC scheme for a coupled free flow-porous media system with heat transport on non-uniform grids. (English) Zbl 07488703 J. Sci. Comput. 90, No. 3, Paper No. 90, 32 p. (2022). MSC: 65M06 65M12 65M15 76D07 76S05 80A19 35Q35 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, J. Sci. Comput. 90, No. 3, Paper No. 90, 32 p. (2022; Zbl 07488703) Full Text: DOI OpenURL
Pacheco, Douglas R. Q.; Steinbach, Olaf On the initial higher-order pressure convergence in equal-order finite element discretizations of the Stokes system. (English) Zbl 07483126 Comput. Math. Appl. 109, 140-145 (2022). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{D. R. Q. Pacheco} and \textit{O. Steinbach}, Comput. Math. Appl. 109, 140--145 (2022; Zbl 07483126) Full Text: DOI OpenURL
Yang, Huaijun Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation. (English) Zbl 07479007 Appl. Math. Lett. 128, Article ID 107872, 8 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{H. Yang}, Appl. Math. Lett. 128, Article ID 107872, 8 p. (2022; Zbl 07479007) Full Text: DOI OpenURL
Ferreira, J. A.; Jordão, D.; Pinto, L. Drug delivery enhanced by ultrasound: mathematical modeling and simulation. (English) Zbl 07469196 Comput. Math. Appl. 107, 57-69 (2022). MSC: 76-XX 92-XX PDF BibTeX XML Cite \textit{J. A. Ferreira} et al., Comput. Math. Appl. 107, 57--69 (2022; Zbl 07469196) Full Text: DOI OpenURL
Shi, Dongyang; Zhang, Houchao A linearized conservative nonconforming FEM for nonlinear Klein-Gordon-Schrödinger equations. (English) Zbl 07469187 Comput. Math. Appl. 106, 57-73 (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{D. Shi} and \textit{H. Zhang}, Comput. Math. Appl. 106, 57--73 (2022; Zbl 07469187) Full Text: DOI OpenURL
Benítez, Marta; Cockburn, Bernardo Post-processing for spatial accuracy-enhancement of pure Lagrange-Galerkin schemes applied to convection-diffusion equations. (English) Zbl 07465492 IMA J. Numer. Anal. 42, No. 1, 54-77 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{M. Benítez} and \textit{B. Cockburn}, IMA J. Numer. Anal. 42, No. 1, 54--77 (2022; Zbl 07465492) Full Text: DOI OpenURL
Cao, Waixiang; Zou, Qingsong Analysis of spectral volume methods for 1D linear scalar hyperbolic equations. (English) Zbl 1481.65206 J. Sci. Comput. 90, No. 1, Paper No. 61, 29 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65N30 65N35 65L06 65N15 65N12 35L02 35F05 PDF BibTeX XML Cite \textit{W. Cao} and \textit{Q. Zou}, J. Sci. Comput. 90, No. 1, Paper No. 61, 29 p. (2022; Zbl 1481.65206) Full Text: DOI OpenURL
Huang, Chaobao; Chen, Hu; An, Na \(\beta\)-robust superconvergent analysis of a finite element method for the distributed order time-fractional diffusion equation. (English) Zbl 1480.65258 J. Sci. Comput. 90, No. 1, Paper No. 44, 20 p. (2022). MSC: 65M60 65M06 65N30 65M15 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{C. Huang} et al., J. Sci. Comput. 90, No. 1, Paper No. 44, 20 p. (2022; Zbl 1480.65258) Full Text: DOI OpenURL
Worku, Zelalem Arega; Zingg, David W. Stability and functional superconvergence of narrow-stencil second-derivative generalized summation-by-parts discretizations. (English) Zbl 1481.65165 J. Sci. Comput. 90, No. 1, Paper No. 42, 32 p. (2022). MSC: 65M06 65M12 65N06 65N12 PDF BibTeX XML Cite \textit{Z. A. Worku} and \textit{D. W. Zingg}, J. Sci. Comput. 90, No. 1, Paper No. 42, 32 p. (2022; Zbl 1481.65165) Full Text: DOI arXiv OpenURL
Toprakseven, Suayip Superconvergence of a modified weak Galerkin method for singularly perturbed two-point elliptic boundary-value problems. (English) Zbl 07444712 Calcolo 59, No. 1, Paper No. 1, 35 p. (2022). MSC: 65N15 65N30 35J50 PDF BibTeX XML Cite \textit{S. Toprakseven}, Calcolo 59, No. 1, Paper No. 1, 35 p. (2022; Zbl 07444712) Full Text: DOI OpenURL
La Spina, Andrea; Fish, Jacob A superconvergent hybridizable discontinuous Galerkin method for weakly compressible magnetohydrodynamics. (English) Zbl 07442813 Comput. Methods Appl. Mech. Eng. 388, Article ID 114278, 32 p. (2022). MSC: 76-XX 74-XX PDF BibTeX XML Cite \textit{A. La Spina} and \textit{J. Fish}, Comput. Methods Appl. Mech. Eng. 388, Article ID 114278, 32 p. (2022; Zbl 07442813) Full Text: DOI OpenURL
Zhu, Peng; Xie, Shenglan Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic problems. (English) Zbl 1484.65310 Appl. Numer. Math. 172, 300-314 (2022). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{P. Zhu} and \textit{S. Xie}, Appl. Numer. Math. 172, 300--314 (2022; Zbl 1484.65310) Full Text: DOI OpenURL
Shi, Dongyang; Zhang, Sihui Unconditional superconvergence of the fully-discrete schemes for nonlinear prey-predator model. (English) Zbl 1484.92005 Appl. Numer. Math. 172, 118-132 (2022). MSC: 92-08 65M60 35Q92 65M12 92D25 PDF BibTeX XML Cite \textit{D. Shi} and \textit{S. Zhang}, Appl. Numer. Math. 172, 118--132 (2022; Zbl 1484.92005) Full Text: DOI OpenURL
Shi, Dongyang; Wang, Ran High accuracy analysis of Galerkin finite element method for Klein-Gordon-Zakharov equations. (English) Zbl 07428254 Appl. Math. Comput. 415, Article ID 126701, 11 p. (2022). MSC: 65Mxx 65Nxx 35Qxx PDF BibTeX XML Cite \textit{D. Shi} and \textit{R. Wang}, Appl. Math. Comput. 415, Article ID 126701, 11 p. (2022; Zbl 07428254) Full Text: DOI OpenURL
Shi, Dongyang; Li, Chaoqun A new combined scheme of \(H^1\)-Galerkin FEM and TGM for bacterial equations. (English) Zbl 07418824 Appl. Numer. Math. 171, 23-31 (2022). MSC: 65Mxx 35Kxx 92Dxx PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Appl. Numer. Math. 171, 23--31 (2022; Zbl 07418824) Full Text: DOI OpenURL
Worku, Zelalem Arega; Zingg, David W. Simultaneous approximation terms and functional accuracy for diffusion problems discretized with multidimensional summation-by-parts operators. (English) Zbl 07515875 J. Comput. Phys. 445, Article ID 110634, 43 p. (2021). MSC: 65Mxx 65Nxx 76Mxx PDF BibTeX XML Cite \textit{Z. A. Worku} and \textit{D. W. Zingg}, J. Comput. Phys. 445, Article ID 110634, 43 p. (2021; Zbl 07515875) Full Text: DOI OpenURL
Sheng, Ying; Zhang, Tie; Pan, Zixing Superconvergence of the finite element method for the Stokes eigenvalue problem. (English) Zbl 07514560 Chaos Solitons Fractals 144, Article ID 110706, 7 p. (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Y. Sheng} et al., Chaos Solitons Fractals 144, Article ID 110706, 7 p. (2021; Zbl 07514560) Full Text: DOI OpenURL
Liu, Kaifang; Song, Lunji A family of interior-penalized weak Galerkin methods for second-order elliptic equations. (English) Zbl 1484.65301 AIMS Math. 6, No. 1, 500-517 (2021). MSC: 65N30 35J15 65N15 PDF BibTeX XML Cite \textit{K. Liu} and \textit{L. Song}, AIMS Math. 6, No. 1, 500--517 (2021; Zbl 1484.65301) Full Text: DOI OpenURL
Tang, Yuelong; Hua, Yuchun A posteriori error estimates based on superconvergence of FEM for fractional evolution equations. (English) Zbl 1482.65169 Open Math. 19, 1210-1222 (2021). MSC: 65M30 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{Y. Hua}, Open Math. 19, 1210--1222 (2021; Zbl 1482.65169) Full Text: DOI OpenURL
Attanayake, Champike; Chou, So-Hsiang Superconvergence and flux recovery for an enriched finite element method. (English) Zbl 07479355 Int. J. Numer. Anal. Model. 18, No. 5, 656-673 (2021). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{C. Attanayake} and \textit{S.-H. Chou}, Int. J. Numer. Anal. Model. 18, No. 5, 656--673 (2021; Zbl 07479355) Full Text: Link OpenURL
Hoang, N. S. Collocation Runge-Kutta-Nyström methods for solving second-order initial value problems. (English) Zbl 1480.65167 Int. J. Comput. Math. 98, No. 12, 2423-2444 (2021). MSC: 65L05 65L06 65L20 65L60 PDF BibTeX XML Cite \textit{N. S. Hoang}, Int. J. Comput. Math. 98, No. 12, 2423--2444 (2021; Zbl 1480.65167) Full Text: DOI OpenURL
Zhang, Gengen; Dai, Xinjie Superconvergence of discontinuous Galerkin method for neutral delay differential equations. (English) Zbl 1480.65195 Int. J. Comput. Math. 98, No. 8, 1648-1662 (2021). MSC: 65L60 65L20 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{X. Dai}, Int. J. Comput. Math. 98, No. 8, 1648--1662 (2021; Zbl 1480.65195) Full Text: DOI OpenURL
Ye, Xiu; Zhang, Shangyou A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. (English) Zbl 07438947 Electron Res. Arch. 29, No. 6, 3609-3627 (2021). MSC: 65N15 65N30 76D07 35B45 35J50 PDF BibTeX XML Cite \textit{X. Ye} and \textit{S. Zhang}, Electron Res. Arch. 29, No. 6, 3609--3627 (2021; Zbl 07438947) Full Text: DOI arXiv OpenURL
Singh, Maneesh Kumar; Singh, Gautam; Natesan, Srinivasan A unified study on superconvergence analysis of Galerkin FEM for singularly perturbed systems of multiscale nature. (English) Zbl 1475.65053 J. Appl. Math. Comput. 66, No. 1-2, 221-243 (2021). MSC: 65L06 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. K. Singh} et al., J. Appl. Math. Comput. 66, No. 1--2, 221--243 (2021; Zbl 1475.65053) Full Text: DOI OpenURL
Deng, Like; Wang, Dongdong; Qi, Dongliang A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis. (English) Zbl 1479.74134 Comput. Mech. 68, No. 5, 1063-1096 (2021). MSC: 74S99 74H45 74K99 74H15 PDF BibTeX XML Cite \textit{L. Deng} et al., Comput. Mech. 68, No. 5, 1063--1096 (2021; Zbl 1479.74134) Full Text: DOI OpenURL
Allouch, C.; Remogna, S.; Sbibih, D.; Tahrichi, M. Superconvergent methods based on quasi-interpolating operators for Fredholm integral equations of the second kind. (English) Zbl 07424125 Appl. Math. Comput. 404, Article ID 126227, 14 p. (2021). MSC: 65Dxx PDF BibTeX XML Cite \textit{C. Allouch} et al., Appl. Math. Comput. 404, Article ID 126227, 14 p. (2021; Zbl 07424125) Full Text: DOI OpenURL
Wu, Yanmi; Shi, Dongyang Quasi-uniform and unconditional superconvergence analysis of Ciarlet-Raviart scheme for the fourth order singularly perturbed bi-wave problem modeling \(d\)-wave superconductors. (English) Zbl 07422780 Appl. Math. Comput. 397, Article ID 125924, 15 p. (2021). MSC: 76Bxx 35Qxx 82Dxx PDF BibTeX XML Cite \textit{Y. Wu} and \textit{D. Shi}, Appl. Math. Comput. 397, Article ID 125924, 15 p. (2021; Zbl 07422780) Full Text: DOI OpenURL
Wang, Junjun; Li, Meng; Guo, Lijuan Superconvergence analysis for nonlinear Schrödinger equation with two-grid finite element method. (English) Zbl 07413911 Appl. Math. Lett. 122, Article ID 107553, 9 p. (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{J. Wang} et al., Appl. Math. Lett. 122, Article ID 107553, 9 p. (2021; Zbl 07413911) Full Text: DOI OpenURL
Pany, Ambit Kumar; Khebchareon, Morrakot; Pani, Amiya K. Negative norm estimates and superconvergence results in Galerkin method for strongly nonlinear parabolic problems. (English) Zbl 07411557 Comput. Math. Appl. 99, 26-36 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{A. K. Pany} et al., Comput. Math. Appl. 99, 26--36 (2021; Zbl 07411557) Full Text: DOI arXiv OpenURL
Shi, Dongyang; Jia, Xu Nonconforming quasi-Wilson finite element approximation for the nonlinear Rosenau equation. (English) Zbl 07410070 Appl. Math. Lett. 119, Article ID 107238, 8 p. (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{D. Shi} and \textit{X. Jia}, Appl. Math. Lett. 119, Article ID 107238, 8 p. (2021; Zbl 07410070) Full Text: DOI OpenURL
Kant, Kapil; Mandal, Moumita; Nelakanti, Gnaneshwar Jacobi spectral Galerkin methods for a class of nonlinear weakly singular Volterra integral equations. (English) Zbl 07409156 Adv. Appl. Math. Mech. 13, No. 5, 1227-1260 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{K. Kant} et al., Adv. Appl. Math. Mech. 13, No. 5, 1227--1260 (2021; Zbl 07409156) Full Text: DOI OpenURL
Yao, Changhui; Li, Yanfei Modified two-grid algorithm for nonlinear power-law conductivity in Maxwell’s problems with high accuracy. (English) Zbl 07409125 Adv. Appl. Math. Mech. 13, No. 2, 481-502 (2021). MSC: 65M60 65M06 65N30 65N12 65M15 65M55 65D05 41A58 78A25 78M10 78M20 35Q61 PDF BibTeX XML Cite \textit{C. Yao} and \textit{Y. Li}, Adv. Appl. Math. Mech. 13, No. 2, 481--502 (2021; Zbl 07409125) Full Text: DOI OpenURL
Li, Yongxian; Cao, Xinjie A new lowest order mixed finite element scheme approximation for telegraph equations. (Chinese. English summary) Zbl 07403800 J. Anhui Univ., Nat. Sci. 45, No. 2, 17-22 (2021). MSC: 65M60 65M12 65M22 PDF BibTeX XML Cite \textit{Y. Li} and \textit{X. Cao}, J. Anhui Univ., Nat. Sci. 45, No. 2, 17--22 (2021; Zbl 07403800) Full Text: DOI OpenURL
Huang, Qiumei; Wang, Min Superconvergence of interpolated collocation solutions for weakly singular Volterra integral equations of the second kind. (English) Zbl 1476.65340 Comput. Appl. Math. 40, No. 3, Paper No. 71, 18 p. (2021). MSC: 65R20 45D05 65L70 PDF BibTeX XML Cite \textit{Q. Huang} and \textit{M. Wang}, Comput. Appl. Math. 40, No. 3, Paper No. 71, 18 p. (2021; Zbl 1476.65340) Full Text: DOI OpenURL
Liang, Conggang; Wang, Junjun Superconvergence analysis of nonconforming \(EQ_1^{rot}\) element for nonlinear parabolic integro-differential equation. (English) Zbl 1473.65308 Math. Methods Appl. Sci. 44, No. 14, 11684-11701 (2021). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{C. Liang} and \textit{J. Wang}, Math. Methods Appl. Sci. 44, No. 14, 11684--11701 (2021; Zbl 1473.65308) Full Text: DOI OpenURL
Li, Yuwen Recovery-based a posteriori error analysis for plate bending problems. (English) Zbl 07389374 J. Sci. Comput. 88, No. 3, Paper No. 77, 26 p. (2021). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{Y. Li}, J. Sci. Comput. 88, No. 3, Paper No. 77, 26 p. (2021; Zbl 07389374) Full Text: DOI arXiv OpenURL
Tao, Qi; Cao, Waixiang; Zhang, Zhimin Superconvergence analysis of the ultra-weak local discontinuous Galerkin method for one dimensional linear fifth order equations. (English) Zbl 07389360 J. Sci. Comput. 88, No. 3, Paper No. 63, 38 p. (2021). MSC: 65Mxx 65Nxx 35Lxx PDF BibTeX XML Cite \textit{Q. Tao} et al., J. Sci. Comput. 88, No. 3, Paper No. 63, 38 p. (2021; Zbl 07389360) Full Text: DOI OpenURL
Ma, Limin Superconvergence of discontinuous Galerkin methods for elliptic boundary value problems. (English) Zbl 07389359 J. Sci. Comput. 88, No. 3, Paper No. 62, 20 p. (2021). MSC: 65Nxx 35Jxx 74Sxx PDF BibTeX XML Cite \textit{L. Ma}, J. Sci. Comput. 88, No. 3, Paper No. 62, 20 p. (2021; Zbl 07389359) Full Text: DOI arXiv OpenURL
Shi, Dongyang; Jia, Xu Superconvergence analysis of a mixed finite element approximation for the nonlinear fourth-order rosenau-RLW equation. (English) Zbl 07384088 Comput. Math. Appl. 98, 169-180 (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{D. Shi} and \textit{X. Jia}, Comput. Math. Appl. 98, 169--180 (2021; Zbl 07384088) Full Text: DOI OpenURL
Becher, Simon; Matthies, Gunar Variational time discretizations of higher order and higher regularity. (English) Zbl 1472.65082 BIT 61, No. 3, 721-755 (2021). MSC: 65L05 65L20 65L60 65M20 PDF BibTeX XML Cite \textit{S. Becher} and \textit{G. Matthies}, BIT 61, No. 3, 721--755 (2021; Zbl 1472.65082) Full Text: DOI arXiv OpenURL
Hu, Jun; Ma, Limin; Ma, Rui Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements. (English) Zbl 1477.65220 Adv. Comput. Math. 47, No. 4, Paper No. 52, 25 p. (2021). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{J. Hu} et al., Adv. Comput. Math. 47, No. 4, Paper No. 52, 25 p. (2021; Zbl 1477.65220) Full Text: DOI arXiv OpenURL
Mu, Lin; Ye, Xiu; Zhang, Shangyou A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. (English) Zbl 07379630 SIAM J. Sci. Comput. 43, No. 4, A2614-A2637 (2021). MSC: 65N30 65N12 65N15 76D07 35B45 35J50 PDF BibTeX XML Cite \textit{L. Mu} et al., SIAM J. Sci. Comput. 43, No. 4, A2614--A2637 (2021; Zbl 07379630) Full Text: DOI arXiv OpenURL
Hu, Hongling; Chen, Chuanmiao; Hu, Shufang; Pan, Kejia Superconvergence of the space-time discontinuous Galerkin method for linear nonhomogeneous hyperbolic equations. (English) Zbl 1480.65259 Calcolo 58, No. 2, Paper No. 16, 25 p. (2021). MSC: 65M60 65M15 65M12 65D32 35L02 PDF BibTeX XML Cite \textit{H. Hu} et al., Calcolo 58, No. 2, Paper No. 16, 25 p. (2021; Zbl 1480.65259) Full Text: DOI OpenURL
Yang, Huaijun Superconvergence error estimate of Galerkin method for Sobolev equation with Burgers’ type nonlinearity. (English) Zbl 1478.65092 Appl. Numer. Math. 168, 13-22 (2021). MSC: 65M60 65M06 65N30 65M12 65M15 76S05 35Q35 PDF BibTeX XML Cite \textit{H. Yang}, Appl. Numer. Math. 168, 13--22 (2021; Zbl 1478.65092) Full Text: DOI OpenURL
Liu, Xiaobin; Zhang, Dazhi; Meng, Xiong; Wu, Boying Superconvergence of local discontinuous Galerkin methods with generalized alternating fluxes for 1D linear convection-diffusion equations. (English) Zbl 1481.65187 Sci. China, Math. 64, No. 6, 1305-1320 (2021). MSC: 65M60 65M06 65N30 65M12 PDF BibTeX XML Cite \textit{X. Liu} et al., Sci. China, Math. 64, No. 6, 1305--1320 (2021; Zbl 1481.65187) Full Text: DOI arXiv OpenURL
Yang, Huaijun; Shi, Dongyang; Liu, Qian Superconvergence analysis of low order nonconforming mixed finite element methods for time-dependent Navier-Stokes equations. (English) Zbl 1474.65373 J. Comput. Math. 39, No. 1, 63-80 (2021). MSC: 65M60 65M12 65N30 65N12 35Q30 65D05 76D05 PDF BibTeX XML Cite \textit{H. Yang} et al., J. Comput. Math. 39, No. 1, 63--80 (2021; Zbl 1474.65373) Full Text: DOI OpenURL
Liu, Changying; Wu, Xinyuan Continuous trigonometric collocation polynomial approximations with geometric and superconvergence analysis for efficiently solving semi-linear highly oscillatory hyperbolic systems. (English) Zbl 1471.65072 Calcolo 58, No. 1, Paper No. 6, 35 p. (2021). MSC: 65M70 65M12 PDF BibTeX XML Cite \textit{C. Liu} and \textit{X. Wu}, Calcolo 58, No. 1, Paper No. 6, 35 p. (2021; Zbl 1471.65072) Full Text: DOI OpenURL
Li, X. Y.; Wu, B. Y. Superconvergent kernel functions approaches for the second kind Fredholm integral equations. (English) Zbl 1467.65117 Appl. Numer. Math. 167, 202-210 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{X. Y. Li} and \textit{B. Y. Wu}, Appl. Numer. Math. 167, 202--210 (2021; Zbl 1467.65117) Full Text: DOI OpenURL
Guan, Hongbo; Yang, Yong; Zhu, Huiqing A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. (English) Zbl 1468.65142 Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1711-1722 (2021). MSC: 65M60 65M12 65J10 49K20 35J15 PDF BibTeX XML Cite \textit{H. Guan} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1711--1722 (2021; Zbl 1468.65142) Full Text: DOI OpenURL
Shallu; Kumari, Archna; Kukreja, Vijay Kumar An improved extrapolated collocation technique for singularly perturbed problems using cubic B-spline functions. (English) Zbl 1462.65090 Mediterr. J. Math. 18, No. 4, Paper No. 128, 29 p. (2021). MSC: 65L11 65D07 65L60 PDF BibTeX XML Cite \textit{Shallu} et al., Mediterr. J. Math. 18, No. 4, Paper No. 128, 29 p. (2021; Zbl 1462.65090) Full Text: DOI OpenURL
Ye, Xiu; Zhang, Shangyou A stabilizer free weak Galerkin finite element method on polytopal mesh. III. (English) Zbl 1475.65172 J. Comput. Appl. Math. 394, Article ID 113538, 9 p. (2021). MSC: 65N15 65N30 35J50 PDF BibTeX XML Cite \textit{X. Ye} and \textit{S. Zhang}, J. Comput. Appl. Math. 394, Article ID 113538, 9 p. (2021; Zbl 1475.65172) Full Text: DOI arXiv OpenURL
Baccouch, Mahboub Two efficient and reliable a posteriori error estimates for the local discontinuous Galerkin method applied to linear elliptic problems on Cartesian grids. (English) Zbl 1473.65286 J. Sci. Comput. 87, No. 3, Paper No. 76, 34 p. (2021). MSC: 65N30 65N50 65N12 65N15 35J25 PDF BibTeX XML Cite \textit{M. Baccouch}, J. Sci. Comput. 87, No. 3, Paper No. 76, 34 p. (2021; Zbl 1473.65286) Full Text: DOI OpenURL
Chakraborty, Samiran; Nelakanti, Gnaneshwar Approximation methods for system of nonlinear Fredholm-Hammerstein integral equations. (English) Zbl 1461.65263 Comput. Appl. Math. 40, No. 1, Paper No. 31, 49 p. (2021). MSC: 65R20 45G15 45B05 PDF BibTeX XML Cite \textit{S. Chakraborty} and \textit{G. Nelakanti}, Comput. Appl. Math. 40, No. 1, Paper No. 31, 49 p. (2021; Zbl 1461.65263) Full Text: DOI OpenURL
Zhang, Xiaoguang; Du, Hong An improved collocation method for solving a fractional integro-differential equation. (English) Zbl 1465.65064 Comput. Appl. Math. 40, No. 1, Paper No. 21, 14 p. (2021). MSC: 65L60 45J05 65L20 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{H. Du}, Comput. Appl. Math. 40, No. 1, Paper No. 21, 14 p. (2021; Zbl 1465.65064) Full Text: DOI OpenURL
Brdar, M.; Radojev, G.; Roos, H.-G.; Teofanov, Lj. Superconvergence analysis of FEM and SDFEM on graded meshes for a problem with characteristic layers. (English) Zbl 07351709 Comput. Math. Appl. 93, 50-57 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Brdar} et al., Comput. Math. Appl. 93, 50--57 (2021; Zbl 07351709) Full Text: DOI arXiv OpenURL
Lu, Jianfang; Liu, Yong; Shu, Chi-Wang An oscillation-free discontinuous Galerkin method for scalar hyperbolic conservation laws. (English) Zbl 1467.65095 SIAM J. Numer. Anal. 59, No. 3, 1299-1324 (2021). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{J. Lu} et al., SIAM J. Numer. Anal. 59, No. 3, 1299--1324 (2021; Zbl 1467.65095) Full Text: DOI OpenURL
Gallistl, Dietmar; Schedensack, Mira Taylor-Hood discretization of the Reissner-Mindlin plate. (English) Zbl 1473.65299 SIAM J. Numer. Anal. 59, No. 3, 1195-1217 (2021). MSC: 65N30 65N12 65N15 74K20 PDF BibTeX XML Cite \textit{D. Gallistl} and \textit{M. Schedensack}, SIAM J. Numer. Anal. 59, No. 3, 1195--1217 (2021; Zbl 1473.65299) Full Text: DOI OpenURL
Mandal, Moumita; Nelakanti, Gnaneshwar Superconvergence results for the nonlinear Fredholm-Hammerstein integral equations of second kind. (Superconvergence results for the nonlinear Fredholm-Hemmerstein integral equations of second kind.) (English) Zbl 1460.65163 J. Anal. 29, No. 1, 67-87 (2021). MSC: 65R20 45B05 45G10 45L05 47H30 PDF BibTeX XML Cite \textit{M. Mandal} and \textit{G. Nelakanti}, J. Anal. 29, No. 1, 67--87 (2021; Zbl 1460.65163) Full Text: DOI OpenURL
Cao, Waixiang; Jia, Lueling; Zhang, Zhimin A \(C^1\) Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. (English) Zbl 1465.65128 Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 81-105 (2021). MSC: 65N30 65N35 65N12 65N15 33C45 PDF BibTeX XML Cite \textit{W. Cao} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 81--105 (2021; Zbl 1465.65128) Full Text: DOI arXiv OpenURL
Liu, Xiong Superconvergence of the high-degree FE method for second-degree elliptic problem with periodic boundary. (English) Zbl 1465.65142 Mediterr. J. Math. 18, No. 3, Paper No. 99, 13 p. (2021). MSC: 65N30 65N12 65N15 35J15 PDF BibTeX XML Cite \textit{X. Liu}, Mediterr. J. Math. 18, No. 3, Paper No. 99, 13 p. (2021; Zbl 1465.65142) Full Text: DOI OpenURL
Liu, Xiaobin; Zhang, Dazhi; Meng, Xiong; Wu, Boying Superconvergence of the local discontinuous Galerkin method for one dimensional nonlinear convection-diffusion equations. (English) Zbl 1462.65148 J. Sci. Comput. 87, No. 1, Paper No. 39, 29 p. (2021). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Sci. Comput. 87, No. 1, Paper No. 39, 29 p. (2021; Zbl 1462.65148) Full Text: DOI OpenURL
Li, Yuwen Superconvergent flux recovery of the Rannacher-Turek nonconforming element. (English) Zbl 1462.65195 J. Sci. Comput. 87, No. 1, Paper No. 32, 20 p. (2021). MSC: 65N30 65N15 35J15 PDF BibTeX XML Cite \textit{Y. Li}, J. Sci. Comput. 87, No. 1, Paper No. 32, 20 p. (2021; Zbl 1462.65195) Full Text: DOI arXiv OpenURL
Wang, Dongdong; Qi, Dongliang; Li, Xiwei Superconvergent isogeometric collocation method with Greville points. (English) Zbl 07340385 Comput. Methods Appl. Mech. Eng. 377, Article ID 113689, 40 p. (2021). MSC: 65-XX 94-XX PDF BibTeX XML Cite \textit{D. Wang} et al., Comput. Methods Appl. Mech. Eng. 377, Article ID 113689, 40 p. (2021; Zbl 07340385) Full Text: DOI OpenURL
Fan, Huijun; Zhao, Yanmin; Wang, Fenling; Shi, Yanhua; Tang, Yifa A superconvergent nonconforming mixed FEM for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficients. (English) Zbl 1468.65140 East Asian J. Appl. Math. 11, No. 1, 63-92 (2021). MSC: 65M60 65M06 65N30 65M12 35R11 PDF BibTeX XML Cite \textit{H. Fan} et al., East Asian J. Appl. Math. 11, No. 1, 63--92 (2021; Zbl 1468.65140) Full Text: DOI OpenURL
Yang, Huaijun Superconvergence error estimate of a linearized energy-stable Galerkin scheme for semilinear wave equation. (English) Zbl 1468.65154 Appl. Math. Lett. 116, Article ID 107006, 8 p. (2021). MSC: 65M60 65M12 65M15 35L05 PDF BibTeX XML Cite \textit{H. Yang}, Appl. Math. Lett. 116, Article ID 107006, 8 p. (2021; Zbl 1468.65154) Full Text: DOI OpenURL
Song, Huiming; Yang, Zhanwen; Diogo, Teresa Collocation methods for cordial Volterra integro-differential equations. (English) Zbl 07337464 J. Comput. Appl. Math. 393, Article ID 113321, 16 p. (2021). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{H. Song} et al., J. Comput. Appl. Math. 393, Article ID 113321, 16 p. (2021; Zbl 07337464) Full Text: DOI OpenURL
Baccouch, Mahboub Analysis of optimal superconvergence of the local discontinuous Galerkin method for nonlinear fourth-order boundary value problems. (English) Zbl 1471.65086 Numer. Algorithms 86, No. 4, 1615-1650 (2021). MSC: 65L10 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 86, No. 4, 1615--1650 (2021; Zbl 1471.65086) Full Text: DOI OpenURL
Baccouch, Mahboub The discontinuous Galerkin method for general nonlinear third-order ordinary differential equations. (English) Zbl 1459.65122 Appl. Numer. Math. 162, 331-350 (2021). MSC: 65L60 65L20 PDF BibTeX XML Cite \textit{M. Baccouch}, Appl. Numer. Math. 162, 331--350 (2021; Zbl 1459.65122) Full Text: DOI OpenURL
Baccouch, Mahboub Optimal superconvergence and asymptotically exact a posteriori error estimator for the local discontinuous Galerkin method for linear elliptic problems on Cartesian grids. (English) Zbl 1458.65144 Appl. Numer. Math. 162, 201-224 (2021). MSC: 65N30 65N12 65N15 65N50 35J25 PDF BibTeX XML Cite \textit{M. Baccouch}, Appl. Numer. Math. 162, 201--224 (2021; Zbl 1458.65144) Full Text: DOI OpenURL
Wu, C.; Zeng, H.; Huang, Y.; Yi, N.; Yuan, J. Superconvergence recovery of cubic edge elements for Maxwell’s equations. (English) Zbl 1457.65221 J. Comput. Appl. Math. 389, Article ID 113333, 19 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N12 78M10 35Q61 PDF BibTeX XML Cite \textit{C. Wu} et al., J. Comput. Appl. Math. 389, Article ID 113333, 19 p. (2021; Zbl 1457.65221) Full Text: DOI OpenURL
Shi, Dongyang; Li, Chaoqun Superconvergence analysis of two-grid methods for bacteria equations. (English) Zbl 1456.65122 Numer. Algorithms 86, No. 1, 123-152 (2021). MSC: 65M60 65M06 65M55 65Z05 65M12 35K40 92C50 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Li}, Numer. Algorithms 86, No. 1, 123--152 (2021; Zbl 1456.65122) Full Text: DOI OpenURL
Du, Shukai; Sayas, Francisco-Javier A note on devising HDG+ projections on polyhedral elements. (English) Zbl 1452.65335 Math. Comput. 90, No. 327, 65-79 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 65N12 74B05 PDF BibTeX XML Cite \textit{S. Du} and \textit{F.-J. Sayas}, Math. Comput. 90, No. 327, 65--79 (2021; Zbl 1452.65335) Full Text: DOI arXiv OpenURL
Zhang, Tie; Sheng, Ying The \(H^1\)-error analysis of the finite element method for solving the fractional diffusion equation. (English) Zbl 1452.65263 J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Sheng}, J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021; Zbl 1452.65263) Full Text: DOI OpenURL
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. The Crank-Nicolson orthogonal spline collocation method for one-dimensional parabolic problems with interfaces. (English) Zbl 1456.65059 J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021). MSC: 65M06 65N35 65M12 65D07 65D32 35K20 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021; Zbl 1456.65059) Full Text: DOI OpenURL
Khalaf, Anas Dheyab; Abouagwa, Mahmoud; Mustafa, Almushaira; Wang, Xiangjun Stochastic Volterra integral equations with jumps and the strong superconvergence of the Euler-Maruyama approximation. (English) Zbl 1452.65018 J. Comput. Appl. Math. 382, Article ID 113071, 14 p. (2021). MSC: 65C30 34K50 45D05 60H20 PDF BibTeX XML Cite \textit{A. D. Khalaf} et al., J. Comput. Appl. Math. 382, Article ID 113071, 14 p. (2021; Zbl 1452.65018) Full Text: DOI OpenURL
Liu, Jinghong; Zhu, Qiding Superconvergence of the function value for pentahedral finite elements for an elliptic equation with varying coefficients. (English) Zbl 07509656 Bound. Value Probl. 2020, Paper No. 7, 15 p. (2020). MSC: 65Nxx PDF BibTeX XML Cite \textit{J. Liu} and \textit{Q. Zhu}, Bound. Value Probl. 2020, Paper No. 7, 15 p. (2020; Zbl 07509656) Full Text: DOI OpenURL
An, Na Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity. (English) Zbl 07507477 Adv. Difference Equ. 2020, Paper No. 511, 10 p. (2020). MSC: 65M60 65M12 65M06 65M15 35R11 PDF BibTeX XML Cite \textit{N. An}, Adv. Difference Equ. 2020, Paper No. 511, 10 p. (2020; Zbl 07507477) Full Text: DOI OpenURL
Baccouch, Mahboub Asymptotically exact a posteriori error estimates for the local discontinuous Galerkin method for nonlinear KdV equations in one space dimension. (English) Zbl 1482.65177 Int. J. Numer. Anal. Model. 17, No. 6, 767-793 (2020). MSC: 65M60 35Q53 65M15 PDF BibTeX XML Cite \textit{M. Baccouch}, Int. J. Numer. Anal. Model. 17, No. 6, 767--793 (2020; Zbl 1482.65177) Full Text: Link Link OpenURL
Guan, Hongbo; Hong, Yapeng; Bi, Congcong Global superconvergence analysis of a nonconforming FEM for Neumann boundary OCPs with elliptic equations. (English) Zbl 1480.65334 Int. J. Comput. Math. 97, No. 12, 2451-2461 (2020). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{H. Guan} et al., Int. J. Comput. Math. 97, No. 12, 2451--2461 (2020; Zbl 1480.65334) Full Text: DOI OpenURL
Kant, Kapil; Nelakanti, Gnaneshwar Error analysis of Jacobi-Galerkin method for solving weakly singular Volterra-Hammerstein integral equations. (English) Zbl 1483.65217 Int. J. Comput. Math. 97, No. 12, 2395-2420 (2020). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{K. Kant} and \textit{G. Nelakanti}, Int. J. Comput. Math. 97, No. 12, 2395--2420 (2020; Zbl 1483.65217) Full Text: DOI OpenURL
Shi, Y. H.; Zhao, Y. M.; Wang, F. L.; Tang, Y. F. Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient. (English) Zbl 1480.65345 Int. J. Comput. Math. 97, No. 8, 1621-1635 (2020). MSC: 65N30 35R11 65N12 PDF BibTeX XML Cite \textit{Y. H. Shi} et al., Int. J. Comput. Math. 97, No. 8, 1621--1635 (2020; Zbl 1480.65345) Full Text: DOI OpenURL
Singh, Gautam; Natesan, Srinivasan Study of the NIPG method for two-parameter singular perturbation problems on several layer adapted grids. (English) Zbl 1475.65058 J. Appl. Math. Comput. 63, No. 1-2, 683-705 (2020). MSC: 65L11 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{G. Singh} and \textit{S. Natesan}, J. Appl. Math. Comput. 63, No. 1--2, 683--705 (2020; Zbl 1475.65058) Full Text: DOI OpenURL