×

Large eddy simulation of longitudinal stationary vortices. (English) Zbl 0832.76038

The large scale structures developing due to centrifugal instabilities in stationary longitudinal vortices are studied by large-eddy simulation. The dynamic subgrid-scale model is used to model the subgrid-scale stress tensor, and temporal simulation is performed so that adequate grid resolution can be obtained.
The simulations are made for a subsonic flow at low Mach number of 0.2 based on the maximum tangential velocity and the far-field speed of sound, which makes the calculations very near the compressible limit. The Reynolds number was 100000, periodic boundary conditions were imposed along the axis of the vortex, and symmetry boundary conditions were used in two directions in the cross plane. New large-scale structures around the core of the Taylor vortex have been observed. These structures appear as counter-rotating vortex rings around the vortex core similar to donut- shaped structures found in a Taylor-Couette flow.

MSC:

76F10 Shear flows and turbulence
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76E99 Hydrodynamic stability
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1098/rspa.1917.0010 · doi:10.1098/rspa.1917.0010
[2] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[3] DOI: 10.1063/1.858164 · Zbl 0753.76074 · doi:10.1063/1.858164
[4] DOI: 10.1063/1.858280 · doi:10.1063/1.858280
[5] DOI: 10.1063/1.858261 · doi:10.1063/1.858261
[6] Squire H. B., Aerosp. Q. 8 pp 302– (1965)
[7] Newman B. G., Aerosp. Q. 10 pp 149– (1959)
[8] Dosanjh D. S., Aerosp. Q. 13 pp 167– (1962)
[9] Owen P. R., Aerosp. 2 pp 69– (1970)
[10] DOI: 10.1017/S0022112063000859 · Zbl 0116.42902 · doi:10.1017/S0022112063000859
[11] DOI: 10.1063/1.1693295 · doi:10.1063/1.1693295
[12] DOI: 10.1017/S0022112079002184 · Zbl 0415.76037 · doi:10.1017/S0022112079002184
[13] DOI: 10.1063/1.1694496 · Zbl 0266.76041 · doi:10.1063/1.1694496
[14] DOI: 10.1017/S0022112081003285 · Zbl 0463.76012 · doi:10.1017/S0022112081003285
[15] DOI: 10.2514/3.43936 · doi:10.2514/3.43936
[16] DOI: 10.2514/3.59082 · doi:10.2514/3.59082
[17] DOI: 10.2514/3.60301 · doi:10.2514/3.60301
[18] DOI: 10.2514/3.49412 · doi:10.2514/3.49412
[19] DOI: 10.1007/BF00192746 · doi:10.1007/BF00192746
[20] DOI: 10.1063/1.858293 · doi:10.1063/1.858293
[21] DOI: 10.1017/S0022112084002123 · doi:10.1017/S0022112084002123
[22] DOI: 10.1017/S0022112091000058 · doi:10.1017/S0022112091000058
[23] DOI: 10.2514/3.50547 · doi:10.2514/3.50547
[24] DOI: 10.2514/3.60990 · doi:10.2514/3.60990
[25] DOI: 10.2514/3.10094 · doi:10.2514/3.10094
[26] DOI: 10.1016/0360-1285(86)90016-X · doi:10.1016/0360-1285(86)90016-X
[27] DOI: 10.2514/3.10455 · doi:10.2514/3.10455
[28] DOI: 10.1016/0142-727X(91)90003-E · doi:10.1016/0142-727X(91)90003-E
[29] DOI: 10.1002/fld.1650160506 · Zbl 0825.76640 · doi:10.1002/fld.1650160506
[30] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[31] DOI: 10.1017/S0022112085001550 · doi:10.1017/S0022112085001550
[32] DOI: 10.1017/S0022112092001678 · Zbl 0775.76059 · doi:10.1017/S0022112092001678
[33] DOI: 10.1063/1.858491 · Zbl 0742.76060 · doi:10.1063/1.858491
[34] DOI: 10.1090/S0025-5718-1976-0443362-6 · doi:10.1090/S0025-5718-1976-0443362-6
[35] DOI: 10.1017/S0022112074002175 · Zbl 0277.76041 · doi:10.1017/S0022112074002175
[36] DOI: 10.1063/1.858826 · Zbl 0801.76023 · doi:10.1063/1.858826
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.