×

Bénard-von Kármán instability: transient and forced regimes. (English) Zbl 0641.76046

The wake flow behind a circular cylinder has been investigated experimentally near the Hopf bifurcation condition which marks the transition from steady to oscillatory flow. Near this oscillation threshold non-intrusive laser Doppler anemometry has been used to prove the applicability of a Stuart-Landau oscillator model. The coefficients of this model equation have determined by studying the transient behavior as well as the impulse response of the system in the super- and subcritical regime. Furthermore, the response of the externally forced system has been determined by investigating the resonance and synchronization behavior for the simple and harmonic frequency. The results show that, in agreement with the commonly made assumption, nonlinearity affects the amplitude but is of negligible influence upon the frequency.
Reviewer: W.Koch

MSC:

76E30 Nonlinear effects in hydrodynamic stability
76D25 Wakes and jets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Landau, C.R. Acad. Sci. URSS 44 pp 311– (1944)
[2] DOI: 10.1017/S0022112080000419 · Zbl 0428.76032 · doi:10.1017/S0022112080000419
[3] Tam, J. Fluid Mech. 45 pp 203– (1978)
[4] DOI: 10.1017/S002211206000116X · Zbl 0096.21102 · doi:10.1017/S002211206000116X
[5] Coutanceau, J. Fluid Mech. 79 pp 237– (1977)
[6] DOI: 10.1017/S0022112058000276 · Zbl 0081.41001 · doi:10.1017/S0022112058000276
[7] Blevins, J. Fluid Mech. 161 pp 217– (1985)
[8] Bishop, Proc. R. Soc. Lond. 277 pp 32– (1964)
[9] DOI: 10.1017/S0022112082001578 · Zbl 0514.76017 · doi:10.1017/S0022112082001578
[10] DOI: 10.1146/annurev.fl.04.010172.001525 · doi:10.1146/annurev.fl.04.010172.001525
[11] DOI: 10.1007/BF01646553 · Zbl 0223.76041 · doi:10.1007/BF01646553
[12] Roshko, NACA Tech. Note 2913 pp 1– (1954)
[13] BÉnard, C. R. Acad. Sci. Paris 147 pp 839– (1908)
[14] DOI: 10.1017/S0022112069000541 · doi:10.1017/S0022112069000541
[15] DOI: 10.1017/S0022112060000530 · Zbl 0100.23302 · doi:10.1017/S0022112060000530
[16] DOI: 10.1017/S0022112067002253 · doi:10.1017/S0022112067002253
[17] DOI: 10.1016/0022-460X(85)90445-6 · doi:10.1016/0022-460X(85)90445-6
[18] Jackson, J. Fluid Mech. 182 pp 23– (1987)
[19] DOI: 10.1017/S002211207100082X · doi:10.1017/S002211207100082X
[20] DOI: 10.1017/S0022112071003070 · doi:10.1017/S0022112071003070
[21] Toebes, Trans ASME D: J. Basic Engng 91 pp 493– (1969) · doi:10.1115/1.3571165
[22] DOI: 10.1063/1.861328 · doi:10.1063/1.861328
[23] DOI: 10.1017/S0022112084002056 · Zbl 0585.76046 · doi:10.1017/S0022112084002056
[24] Mathis, J. Phys. Paris Lett. 45 pp 483– (1984) · doi:10.1051/jphyslet:019840045010048300
[25] DOI: 10.1017/S0022112082002122 · Zbl 0496.76044 · doi:10.1017/S0022112082002122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.