Ji, Chunyan; Yang, Xue; Li, Yong Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays. (English) Zbl 07307360 J. Dyn. Differ. Equations 33, No. 1, 135-176 (2021). MSC: 34K60 34K50 92D25 34K25 34K13 PDF BibTeX XML Cite \textit{C. Ji} et al., J. Dyn. Differ. Equations 33, No. 1, 135--176 (2021; Zbl 07307360) Full Text: DOI
Li, Zhimin; Zhang, Tailei; Li, Xiuqing Threshold dynamics of stochastic models with time delays: a case study for Yunnan, China. (English) Zbl 07300776 Electron Res. Arch. 29, No. 1, 1661-1679 (2021). MSC: 34K60 92C60 34K50 34K25 PDF BibTeX XML Cite \textit{Z. Li} et al., Electron Res. Arch. 29, No. 1, 1661--1679 (2021; Zbl 07300776) Full Text: DOI
Zhang, Yan; Lv, Jingliang; Zou, Xiaoling Dynamics of stochastic single-species models. (English) Zbl 07279016 Math. Methods Appl. Sci. 43, No. 15, 8728-8735 (2020). MSC: 60G10 60G15 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Math. Methods Appl. Sci. 43, No. 15, 8728--8735 (2020; Zbl 07279016) Full Text: DOI
Nguyen Huu Du; Nguyen Thanh Dieu; Tran Quan Ky; Vu Hai Sam Long-time behavior of a stochastic SIQR model with Markov switching. (English) Zbl 07270262 Acta Math. Vietnam. 45, No. 4, 903-915 (2020). MSC: 34C60 92D30 34F05 60H10 34D05 PDF BibTeX XML Cite \textit{Nguyen Huu Du} et al., Acta Math. Vietnam. 45, No. 4, 903--915 (2020; Zbl 07270262) Full Text: DOI
Lv, Jie; Wei, Yuming; Peng, Huaqin Dynamical analysis of stochastic SIS epidemic model with the Beddington-DeAngelis incidence and double diseases. (Chinese. English summary) Zbl 07266980 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 31-38 (2020). MSC: 34D20 60H10 92D30 PDF BibTeX XML Cite \textit{J. Lv} et al., J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 31--38 (2020; Zbl 07266980) Full Text: DOI
Huang, Canyun; Liang, Hongyang; Meng, Xinyou Dynamic behavior of stochastic predator-prey system with Lévy jumps. (Chinese. English summary) Zbl 07266873 J. Lanzhou Univ. Technol. 46, No. 1, 152-157 (2020). MSC: 37H10 92D25 PDF BibTeX XML Cite \textit{C. Huang} et al., J. Lanzhou Univ. Technol. 46, No. 1, 152--157 (2020; Zbl 07266873)
Zhao, Yihan; Xia, Yuanpei; Yang, Zhichun Asymptotic behavior of stochastic three-species predator-prey systems with white and Lévy noise. (English) Zbl 1451.34072 Electron. J. Differ. Equ. 2020, Paper No. 71, 17 p. (2020). MSC: 34C60 34F05 92D25 34C11 34D05 34D20 60H10 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Electron. J. Differ. Equ. 2020, Paper No. 71, 17 p. (2020; Zbl 1451.34072) Full Text: Link
Nguyen, Dang H.; Nguyen, Nhu N.; Yin, George Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model. (English) Zbl 1443.60068 J. Appl. Probab. 57, No. 2, 613-636 (2020). MSC: 60H15 92D25 92D30 35Q92 PDF BibTeX XML Cite \textit{D. H. Nguyen} et al., J. Appl. Probab. 57, No. 2, 613--636 (2020; Zbl 1443.60068) Full Text: DOI
Wanduku, Divine; Oluyede, B. O. Some asymptotic properties of SEIRS models with nonlinear incidence and random delays. (English) Zbl 1444.92127 Nonlinear Anal., Model. Control 25, No. 3, 461-481 (2020). MSC: 92D30 34K50 PDF BibTeX XML Cite \textit{D. Wanduku} and \textit{B. O. Oluyede}, Nonlinear Anal., Model. Control 25, No. 3, 461--481 (2020; Zbl 1444.92127) Full Text: DOI
Wang, Rui; Li, Xiaoyue; Yin, George Asymptotic properties of multi-species Lotka-Volterra models with regime switching involving weak and strong interactions. (English) Zbl 1436.60058 J. Nonlinear Sci. 30, No. 2, 565-601 (2020). MSC: 60H10 34F05 92B05 PDF BibTeX XML Cite \textit{R. Wang} et al., J. Nonlinear Sci. 30, No. 2, 565--601 (2020; Zbl 1436.60058) Full Text: DOI
Rifhat, Ramziya; Muhammadhaji, Ahmadjan; Teng, Zhidong Asymptotic properties of a stochastic SIRS epidemic model with nonlinear incidence and varying population sizes. (English) Zbl 07188009 Dyn. Syst. 35, No. 1, 56-80 (2020). MSC: 92D30 60H30 35B35 PDF BibTeX XML Cite \textit{R. Rifhat} et al., Dyn. Syst. 35, No. 1, 56--80 (2020; Zbl 07188009) Full Text: DOI
Borysenko, Olga; Borysenko, Oleksandr Stochastic two-species mutualism model with jumps. (English) Zbl 1435.92050 Mod. Stoch., Theory Appl. 7, No. 1, 1-15 (2020). MSC: 92D25 92D40 60H10 60J74 PDF BibTeX XML Cite \textit{O. Borysenko} and \textit{O. Borysenko}, Mod. Stoch., Theory Appl. 7, No. 1, 1--15 (2020; Zbl 1435.92050) Full Text: DOI
Nguyen, Dang Hai; Yin, George; Zhu, Chao Long-term analysis of a stochastic SIRS model with general incidence rates. (English) Zbl 1437.34061 SIAM J. Appl. Math. 80, No. 2, 814-838 (2020). MSC: 34C60 34D05 34F05 60H10 92D30 PDF BibTeX XML Cite \textit{D. H. Nguyen} et al., SIAM J. Appl. Math. 80, No. 2, 814--838 (2020; Zbl 1437.34061) Full Text: DOI
Caraballo, Tomás; Fatini, Mohamed El; Sekkak, Idriss; Taki, Regragui; Laaribi, Aziz A stochastic threshold for an epidemic model with isolation and a non linear incidence. (English) Zbl 1435.92068 Commun. Pure Appl. Anal. 19, No. 5, 2513-2531 (2020). MSC: 92D30 60J70 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Commun. Pure Appl. Anal. 19, No. 5, 2513--2531 (2020; Zbl 1435.92068) Full Text: DOI
Hu, Jing; Liu, Zhijun Incorporating two coupling noises into a nonlinear competitive system with saturation effect. (English) Zbl 1443.92154 Int. J. Biomath. 13, No. 2, Article ID 2050012, 27 p. (2020). MSC: 92D25 60H10 34D05 PDF BibTeX XML Cite \textit{J. Hu} and \textit{Z. Liu}, Int. J. Biomath. 13, No. 2, Article ID 2050012, 27 p. (2020; Zbl 1443.92154) Full Text: DOI
Nguyen, Nhu N.; Yin, George Stochastic partial differential equation models for spatially dependent predator-prey equations. (English) Zbl 1433.60060 Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 117-139 (2020). MSC: 60H15 92D25 92D40 35Q92 PDF BibTeX XML Cite \textit{N. N. Nguyen} and \textit{G. Yin}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 117--139 (2020; Zbl 1433.60060) Full Text: DOI
Borysenko, O. D.; Borysenko, D. O. Stochastic permanence of solution to stochastic non-autonomous logistic equation with jumps. (Ukrainian. English summary) Zbl 1449.60097 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 10-13 (2019). MSC: 60H10 34F05 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 10--13 (2019; Zbl 1449.60097)
Liu, Yizhong Permanence and extinction for a stochastic two-species competitive system. (English) Zbl 1441.92037 Int. J. Dyn. Syst. Differ. Equ. 9, No. 4, 324-334 (2019). MSC: 92D25 37N25 37H10 34F05 37H30 PDF BibTeX XML Cite \textit{Y. Liu}, Int. J. Dyn. Syst. Differ. Equ. 9, No. 4, 324--334 (2019; Zbl 1441.92037) Full Text: DOI
Kant, Shashi Dynamics of an ecological system. (English) Zbl 1436.37098 Adv. Pure Appl. Math. 10, No. 4, 355-376 (2019). MSC: 37N25 92D40 92D25 PDF BibTeX XML Cite \textit{S. Kant}, Adv. Pure Appl. Math. 10, No. 4, 355--376 (2019; Zbl 1436.37098) Full Text: DOI
Li, Xiaoyue; Song, Guoting; Xia, Yang; Yuan, Chenggui Dynamical behaviors of the tumor-immune system in a stochastic environment. (English) Zbl 1439.92065 SIAM J. Appl. Math. 79, No. 6, 2193-2217 (2019). MSC: 92C32 60H10 34B18 37C40 PDF BibTeX XML Cite \textit{X. Li} et al., SIAM J. Appl. Math. 79, No. 6, 2193--2217 (2019; Zbl 1439.92065) Full Text: DOI arXiv
Qin, Jianli; Liu, Guirong Permanence of stochastic mutualism model with Lévy jumps. (Chinese. English summary) Zbl 1438.60079 J. Henan Univ. Sci. Technol., Nat. Sci. 40, No. 3, 85-89, 94 (2019). MSC: 60H10 34D20 PDF BibTeX XML Cite \textit{J. Qin} and \textit{G. Liu}, J. Henan Univ. Sci. Technol., Nat. Sci. 40, No. 3, 85--89, 94 (2019; Zbl 1438.60079) Full Text: DOI
Zhang, Weiwei; Meng, Xinzhu; Dong, Yulin Periodic solution and ergodic stationary distribution of stochastic SIRI epidemic systems with nonlinear perturbations. (English) Zbl 1418.92209 J. Syst. Sci. Complex. 32, No. 4, 1104-1124 (2019). MSC: 92D30 34C25 93E03 37A50 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Syst. Sci. Complex. 32, No. 4, 1104--1124 (2019; Zbl 1418.92209) Full Text: DOI
Kant, Shashi Permanence of stochastic biological systems. (English) Zbl 1418.92102 Discontin. Nonlinearity Complex. 8, No. 2, 155-168 (2019). MSC: 92D25 37N25 37H10 60H10 PDF BibTeX XML Cite \textit{S. Kant}, Discontin. Nonlinearity Complex. 8, No. 2, 155--168 (2019; Zbl 1418.92102) Full Text: DOI
Kant, Shashi Note on the permanence of stochastic population models. (English) Zbl 07077624 Random Oper. Stoch. Equ. 27, No. 2, 123-129 (2019). MSC: 60H30 60H10 92D25 PDF BibTeX XML Cite \textit{S. Kant}, Random Oper. Stoch. Equ. 27, No. 2, 123--129 (2019; Zbl 07077624) Full Text: DOI
Nsuami, Mozart U.; Witbooi, Peter J. Stochastic dynamics of an HIV/AIDS epidemic model with treatment. (English) Zbl 1417.92194 Quaest. Math. 42, No. 5, 605-621 (2019). MSC: 92D30 34D05 PDF BibTeX XML Cite \textit{M. U. Nsuami} and \textit{P. J. Witbooi}, Quaest. Math. 42, No. 5, 605--621 (2019; Zbl 1417.92194) Full Text: DOI
Qi, Haokun; Meng, Xinzhu; Feng, Tao Dynamics analysis of a stochastic non-autonomous one-predator-two-prey system with Beddington-DeAngelis functional response and impulsive perturbations. (English) Zbl 07072647 Adv. Difference Equ. 2019, Paper No. 235, 35 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{H. Qi} et al., Adv. Difference Equ. 2019, Paper No. 235, 35 p. (2019; Zbl 07072647) Full Text: DOI
Du, Nguyen Huu; Dieu, Nguyen Thanh; Nhu, Nguyen Ngoc Conditions for permanence and ergodicity of certain SIR epidemic models. (English) Zbl 1416.34037 Acta Appl. Math. 160, No. 1, 81-99 (2019). MSC: 34C60 60H10 92D30 34D05 60F17 34F05 PDF BibTeX XML Cite \textit{N. H. Du} et al., Acta Appl. Math. 160, No. 1, 81--99 (2019; Zbl 1416.34037) Full Text: DOI
Liu, Meng; Deng, Meiling Permanence and extinction of a stochastic hybrid model for tumor growth. (English) Zbl 1423.92098 Appl. Math. Lett. 94, 66-72 (2019). MSC: 92C50 60H10 PDF BibTeX XML Cite \textit{M. Liu} and \textit{M. Deng}, Appl. Math. Lett. 94, 66--72 (2019; Zbl 1423.92098) Full Text: DOI
Gao, Ning; Song, Yi; Wang, Xinzeng; Liu, Jianxin Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates. (English) Zbl 07020816 Adv. Difference Equ. 2019, Paper No. 41, 19 p. (2019). MSC: 37H10 60H10 92C60 92D30 PDF BibTeX XML Cite \textit{N. Gao} et al., Adv. Difference Equ. 2019, Paper No. 41, 19 p. (2019; Zbl 07020816) Full Text: DOI
Meng, Xinzhu; Li, Fei; Gao, Shujing Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay. (English) Zbl 1428.92113 Appl. Math. Comput. 339, 701-726 (2018). MSC: 92D30 92D40 PDF BibTeX XML Cite \textit{X. Meng} et al., Appl. Math. Comput. 339, 701--726 (2018; Zbl 1428.92113) Full Text: DOI
Zeng, Ting; Teng, Zhidong Survival analysis of stochastic three-species food chain model with white noise and general Lévy jumps. (Chinese. English summary) Zbl 1424.92038 J. Univ. Sci. Technol. China 48, No. 8, 622-630 (2018). MSC: 92D25 60H10 PDF BibTeX XML Cite \textit{T. Zeng} and \textit{Z. Teng}, J. Univ. Sci. Technol. China 48, No. 8, 622--630 (2018; Zbl 1424.92038) Full Text: DOI
Huang, Canyun; Hao, Yixin; Meng, Xinyou Dynamic behavior analysis of stochastic SIV epidemic model. (Chinese. English summary) Zbl 1424.34143 J. Lanzhou Univ. Technol. 44, No. 5, 150-154 (2018). MSC: 34C60 34D20 60H10 92D30 34F05 34D05 34C11 PDF BibTeX XML Cite \textit{C. Huang} et al., J. Lanzhou Univ. Technol. 44, No. 5, 150--154 (2018; Zbl 1424.34143)
Wang, Li; Wang, Xiaoqiang; Zhang, Qimin Permanence and extinction of a high-dimensional stochastic resource competition model with noise. (English) Zbl 1448.92385 Adv. Difference Equ. 2018, Paper No. 441, 18 p. (2018). MSC: 92D40 92D25 34D05 PDF BibTeX XML Cite \textit{L. Wang} et al., Adv. Difference Equ. 2018, Paper No. 441, 18 p. (2018; Zbl 1448.92385) Full Text: DOI
Anton, Cristina; Yong, Alan Stochastic dynamics and survival analysis of a cell population model with random perturbations. (English) Zbl 1406.92486 Math. Biosci. Eng. 15, No. 5, 1077-1098 (2018). MSC: 92D25 60H30 PDF BibTeX XML Cite \textit{C. Anton} and \textit{A. Yong}, Math. Biosci. Eng. 15, No. 5, 1077--1098 (2018; Zbl 1406.92486) Full Text: DOI
Lan, Guijie; Fu, Yingjie; Wei, Chunjin; Zhang, Shuwen Dynamical analysis of a ratio-dependent predator-prey model with Holling III type functional response and nonlinear harvesting in a random environment. (English) Zbl 1446.37086 Adv. Difference Equ. 2018, Paper No. 198, 25 p. (2018). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{G. Lan} et al., Adv. Difference Equ. 2018, Paper No. 198, 25 p. (2018; Zbl 1446.37086) Full Text: DOI
Chi, Mengnan; Zhao, Wencai Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment. (English) Zbl 1445.92236 Adv. Difference Equ. 2018, Paper No. 120, 16 p. (2018). MSC: 92D25 92D40 60H10 65C30 PDF BibTeX XML Cite \textit{M. Chi} and \textit{W. Zhao}, Adv. Difference Equ. 2018, Paper No. 120, 16 p. (2018; Zbl 1445.92236) Full Text: DOI
Zhang, Shengqiang; Meng, Xinzhu; Wang, Xinzeng Application of stochastic inequalities to global analysis of a nonlinear stochastic SIRS epidemic model with saturated treatment function. (English) Zbl 1445.92287 Adv. Difference Equ. 2018, Paper No. 50, 22 p. (2018). MSC: 92D30 92D25 60H10 PDF BibTeX XML Cite \textit{S. Zhang} et al., Adv. Difference Equ. 2018, Paper No. 50, 22 p. (2018; Zbl 1445.92287) Full Text: DOI
Sengupta, Sampurna; Das, Pritha; Mukherjee, Debasis Stochastic non-autonomous Holling type-III prey-predator model with predator’s intra-specific competition. (English) Zbl 1403.37097 Discrete Contin. Dyn. Syst., Ser. B 23, No. 8, 3275-3296 (2018). MSC: 37N25 92D25 60H30 PDF BibTeX XML Cite \textit{S. Sengupta} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 8, 3275--3296 (2018; Zbl 1403.37097) Full Text: DOI
Chen, Yiliang; Teng, Zhidong The extinction and persistence of stochastical perturbed SIVS epidemic models with general nonlinear incidence rate. (Chinese. English summary) Zbl 1424.92042 J. Northeast Norm. Univ., Nat. Sci. Ed. 50, No. 1, 47-53 (2018). MSC: 92D30 60H15 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Teng}, J. Northeast Norm. Univ., Nat. Sci. Ed. 50, No. 1, 47--53 (2018; Zbl 1424.92042) Full Text: DOI
Lv, Huibin; Liu, Zhijun; Li, Zuxiong; Wang, Lianwen; Xu, Dashun Two impulsive stochastic delay single-species models incorporating Lévy noise. (English) Zbl 1398.34122 J. Appl. Math. Comput. 58, No. 1-2, 721-753 (2018). MSC: 34K60 34K25 92D25 34K45 34K50 PDF BibTeX XML Cite \textit{H. Lv} et al., J. Appl. Math. Comput. 58, No. 1--2, 721--753 (2018; Zbl 1398.34122) Full Text: DOI
Wang, Pan; Li, Bing; Li, Yongkun Asymptotic behavior of a stochastic two-species competition system with impulsive effects. (English) Zbl 1401.92168 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 5, 427-438 (2018). MSC: 92D25 34A37 34F05 60H10 93E15 PDF BibTeX XML Cite \textit{P. Wang} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 5, 427--438 (2018; Zbl 1401.92168) Full Text: DOI
Wei, Tengda; Wang, Sheng; Wang, Linshan Permanence and extinction of stochastic competitive Lotka-Volterra system with Lévy noise. (English) Zbl 1391.60148 J. Appl. Math. Comput. 57, No. 1-2, 667-683 (2018). MSC: 60H10 60H30 92D25 PDF BibTeX XML Cite \textit{T. Wei} et al., J. Appl. Math. Comput. 57, No. 1--2, 667--683 (2018; Zbl 1391.60148) Full Text: DOI
Lu, Chun; Chen, Jian; Fan, Xingkui; Zhang, Lei Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations. (English) Zbl 1395.92131 J. Appl. Math. Comput. 57, No. 1-2, 437-465 (2018). MSC: 92D25 60H40 34K45 60H10 PDF BibTeX XML Cite \textit{C. Lu} et al., J. Appl. Math. Comput. 57, No. 1--2, 437--465 (2018; Zbl 1395.92131) Full Text: DOI
Nguyen Thanh Dieu Asymptotic properties of a stochastic SIR epidemic model with Beddington-DeAngelis incidence rate. (English) Zbl 1387.34076 J. Dyn. Differ. Equations 30, No. 1, 93-106 (2018). MSC: 34C60 60H10 92D30 34D05 34F05 37A25 PDF BibTeX XML Cite \textit{Nguyen Thanh Dieu}, J. Dyn. Differ. Equations 30, No. 1, 93--106 (2018; Zbl 1387.34076) Full Text: DOI
Lv, Huibin; Liu, Zhijun; Chen, Yiping; Cheng, Jun; Xu, Dashun Stochastic permanence of two impulsive stochastic delay single species systems incorporating predation term. (English) Zbl 1394.34175 J. Appl. Math. Comput. 56, No. 1-2, 691-713 (2018). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 34K60 92D25 60H10 34K50 34K25 PDF BibTeX XML Cite \textit{H. Lv} et al., J. Appl. Math. Comput. 56, No. 1--2, 691--713 (2018; Zbl 1394.34175) Full Text: DOI
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed Stochastic mutualism model with Lévy jumps. (English) Zbl 07257285 Commun. Nonlinear Sci. Numer. Simul. 43, 78-90 (2017). MSC: 92 60 PDF BibTeX XML Cite \textit{Q. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 43, 78--90 (2017; Zbl 07257285) Full Text: DOI
Li, Yanqing; Zhang, Long The stochastic interactions between predator and prey under Markovian switching: competitive interaction between multiple prey. (English) Zbl 1412.92265 J. Nonlinear Sci. Appl. 10, No. 11, 5622-5645 (2017). MSC: 92D25 34D20 34D10 PDF BibTeX XML Cite \textit{Y. Li} and \textit{L. Zhang}, J. Nonlinear Sci. Appl. 10, No. 11, 5622--5645 (2017; Zbl 1412.92265) Full Text: DOI
Li, Fei; Meng, Xinzhu; Cui, Yujun Nonlinear stochastic analysis for a stochastic SIS epidemic model. (English) Zbl 1412.60083 J. Nonlinear Sci. Appl. 10, No. 9, 5116-5124 (2017). MSC: 60H10 65C30 91B70 PDF BibTeX XML Cite \textit{F. Li} et al., J. Nonlinear Sci. Appl. 10, No. 9, 5116--5124 (2017; Zbl 1412.60083) Full Text: DOI
Liu, Meng; Deng, Meiling; Wang, Zhaojuan Permanence of a stochastic delay competition model with Lévy jumps. (English) Zbl 1412.92263 J. Nonlinear Sci. Appl. 10, No. 6, 3245-3260 (2017). MSC: 92D25 60H10 60H30 PDF BibTeX XML Cite \textit{M. Liu} et al., J. Nonlinear Sci. Appl. 10, No. 6, 3245--3260 (2017; Zbl 1412.92263) Full Text: DOI
Deng, Meiling On a non-autonomous stochastic Lotka-Volterra competitive system. (English) Zbl 1412.92254 J. Nonlinear Sci. Appl. 10, No. 6, 3099-3108 (2017). MSC: 92D25 60H10 60H30 PDF BibTeX XML Cite \textit{M. Deng}, J. Nonlinear Sci. Appl. 10, No. 6, 3099--3108 (2017; Zbl 1412.92254) Full Text: DOI
Wu, Ruihua Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations. (English) Zbl 1412.34185 J. Nonlinear Sci. Appl. 10, No. 2, 436-450 (2017). MSC: 34F05 34D05 PDF BibTeX XML Cite \textit{R. Wu}, J. Nonlinear Sci. Appl. 10, No. 2, 436--450 (2017; Zbl 1412.34185) Full Text: DOI
Miao, Anqi; Wang, Xinyang; Zhang, Tongqian; Wang, Wei; Sampath Aruna Pradeep, BG Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis. (English) Zbl 1422.92159 Adv. Difference Equ. 2017, Paper No. 226, 27 p. (2017). MSC: 92D30 60H10 92D25 34K20 60H30 PDF BibTeX XML Cite \textit{A. Miao} et al., Adv. Difference Equ. 2017, Paper No. 226, 27 p. (2017; Zbl 1422.92159) Full Text: DOI
Yang, Liu; Tian, Baodan Asymptotic properties of a stochastic nonautonomous competitive system with impulsive perturbations. (English) Zbl 1422.92134 Adv. Difference Equ. 2017, Paper No. 201, 17 p. (2017). MSC: 92D25 60H10 92D40 34K20 34K60 PDF BibTeX XML Cite \textit{L. Yang} and \textit{B. Tian}, Adv. Difference Equ. 2017, Paper No. 201, 17 p. (2017; Zbl 1422.92134) Full Text: DOI
Guo, Shengliang; Hu, Yijun Asymptotic behavior and numerical simulations of a Lotka-Volterra mutualism system with white noises. (English) Zbl 1422.60095 Adv. Difference Equ. 2017, Paper No. 125, 19 p. (2017). MSC: 60H10 92D40 92D25 34F05 60H30 PDF BibTeX XML Cite \textit{S. Guo} and \textit{Y. Hu}, Adv. Difference Equ. 2017, Paper No. 125, 19 p. (2017; Zbl 1422.60095) Full Text: DOI
Borysenko, O. D.; Borysenko, D. O. Non-autonomous stochastic logistic differential equation with non-centered Poisson measure. (English) Zbl 1413.60046 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2017, No. 4, 9-14 (2017). MSC: 60H10 34F05 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2017, No. 4, 9--14 (2017; Zbl 1413.60046)
Zhang, Xuekang; Zhang, Zhenzhong Permanence and extinction of stochastic smoking model. (Chinese. English summary) Zbl 1399.60104 J. East China Norm. Univ., Nat. Sci. Ed., No. 4, 71-88 (2017). MSC: 60H10 60J65 92C50 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Z. Zhang}, J. East China Norm. Univ., Nat. Sci. Ed. , No. 4, 71--88 (2017; Zbl 1399.60104) Full Text: DOI
Lu, Chun; Ma, Qiang Analysis of a stochastic Lotka-Volterra competitive model with infinite delay and impulsive perturbations. (English) Zbl 1390.34232 Taiwanese J. Math. 21, No. 6, 1413-1436 (2017). MSC: 34K60 34K45 34K50 34K25 34K20 92D25 PDF BibTeX XML Cite \textit{C. Lu} and \textit{Q. Ma}, Taiwanese J. Math. 21, No. 6, 1413--1436 (2017; Zbl 1390.34232) Full Text: DOI Euclid
Wang, Sheng; Wang, Linshan; Wei, Tengda Well-posedness and asymptotic behaviors for a predator-prey system with Lévy noise. (English) Zbl 1391.92044 Methodol. Comput. Appl. Probab. 19, No. 3, 715-725 (2017). MSC: 92D25 60H10 60H30 PDF BibTeX XML Cite \textit{S. Wang} et al., Methodol. Comput. Appl. Probab. 19, No. 3, 715--725 (2017; Zbl 1391.92044) Full Text: DOI
Zhang, Daoxiang; Hu, Wei; Tao, Long; Zhou, Wen Dynamics of a stochastic SIS epidemic model with different incidences and double epidemic hypothesis. (Chinese. English summary) Zbl 1389.92061 J. Shandong Univ., Nat. Sci. 52, No. 5, 10-17 (2017). MSC: 92D30 60H10 PDF BibTeX XML Cite \textit{D. Zhang} et al., J. Shandong Univ., Nat. Sci. 52, No. 5, 10--17 (2017; Zbl 1389.92061) Full Text: DOI
Zu, Li; Jiang, Daqing; O’Regan, Donal Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation. (English) Zbl 06819561 Czech. Math. J. 67, No. 4, 867-890 (2017). MSC: 34F05 92D25 PDF BibTeX XML Cite \textit{L. Zu} et al., Czech. Math. J. 67, No. 4, 867--890 (2017; Zbl 06819561) Full Text: DOI
Zhu, Yu; Liu, Meng Permanence and extinction in a stochastic service-resource mutualism model. (English) Zbl 1400.92598 Appl. Math. Lett. 69, 1-7 (2017). MSC: 92D40 60H10 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{M. Liu}, Appl. Math. Lett. 69, 1--7 (2017; Zbl 1400.92598) Full Text: DOI
Wang, Rui; Li, Xiaoyue; Mukama, Denis S. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. (English) Zbl 1368.60063 Discrete Contin. Dyn. Syst., Ser. B 22, No. 9, 3499-3528 (2017). MSC: 60H10 92B05 PDF BibTeX XML Cite \textit{R. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 22, No. 9, 3499--3528 (2017; Zbl 1368.60063) Full Text: DOI
Li, Xiaoyue; Yin, George Switching diffusion logistic models involving singularly perturbed Markov chains: weak convergence and stochastic permanence. (English) Zbl 1361.60044 Stochastic Anal. Appl. 35, No. 2, 364-389 (2017). MSC: 60H10 60J60 60F05 60J27 60J28 92D25 PDF BibTeX XML Cite \textit{X. Li} and \textit{G. Yin}, Stochastic Anal. Appl. 35, No. 2, 364--389 (2017; Zbl 1361.60044) Full Text: DOI
Meng, Xinzhu; Wang, Lu; Zhang, Tonghua Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. (English) Zbl 07246761 J. Appl. Anal. Comput. 6, No. 3, 865-875 (2016). MSC: 34D23 34K20 92D30 PDF BibTeX XML Cite \textit{X. Meng} et al., J. Appl. Anal. Comput. 6, No. 3, 865--875 (2016; Zbl 07246761) Full Text: DOI
Liu, Zhijun; Guo, Shengliang; Tan, Ronghua; Liu, Meng Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations. (English) Zbl 07160050 Appl. Math. Modelling 40, No. 9-10, 5510-5531 (2016). MSC: 60 34 PDF BibTeX XML Cite \textit{Z. Liu} et al., Appl. Math. Modelling 40, No. 9--10, 5510--5531 (2016; Zbl 07160050) Full Text: DOI
He, Rensheng; Xiong, Zuoliang; Hong, Desheng; Yin, Hongwei Analysis of a stochastic ratio-dependent one-predator and two-mutualistic-preys model with Markovian switching and Holling type III functional response. (English) Zbl 1418.92093 Adv. Difference Equ. 2016, Paper No. 285, 23 p. (2016). MSC: 92D25 34C60 34F05 60H10 34D20 PDF BibTeX XML Cite \textit{R. He} et al., Adv. Difference Equ. 2016, Paper No. 285, 23 p. (2016; Zbl 1418.92093) Full Text: DOI
Wei, Fengying; Chen, Fangxiang Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations. (English) Zbl 1400.92555 Physica A 453, 99-107 (2016). MSC: 92D30 34C60 34D05 34F05 60H30 PDF BibTeX XML Cite \textit{F. Wei} and \textit{F. Chen}, Physica A 453, 99--107 (2016; Zbl 1400.92555) Full Text: DOI
Wang, Changjian; Xiong, Zuoliang; He, Rensheng; Yin, Hongwei Dynamical behaviors of stochastic delayed one-predator and two-competing-prey systems with Holling type IV and Crowley-Martin type functional responses. (English) Zbl 1368.92159 Discrete Dyn. Nat. Soc. 2016, Article ID 7676101, 16 p. (2016). MSC: 92D25 34D20 PDF BibTeX XML Cite \textit{C. Wang} et al., Discrete Dyn. Nat. Soc. 2016, Article ID 7676101, 16 p. (2016; Zbl 1368.92159) Full Text: DOI
Lu, Chun; Wu, Kaining The long time behavior of a stochastic logistic model with infinite delay and impulsive perturbation. (English) Zbl 1357.34125 Taiwanese J. Math. 20, No. 4, 921-941 (2016). MSC: 34K25 34K45 34K50 60H10 92D25 PDF BibTeX XML Cite \textit{C. Lu} and \textit{K. Wu}, Taiwanese J. Math. 20, No. 4, 921--941 (2016; Zbl 1357.34125) Full Text: DOI
Rao, Shaobin; Gan, Xiaorong Almost sure permanence of stochastic competitive Lotka-Volterra system. (English) Zbl 1363.34156 J. Qufu Norm. Univ., Nat. Sci. 42, No. 3, 17-22 (2016). MSC: 34C60 37C60 92D25 34F05 34D05 34D20 60H10 PDF BibTeX XML Cite \textit{S. Rao} and \textit{X. Gan}, J. Qufu Norm. Univ., Nat. Sci. 42, No. 3, 17--22 (2016; Zbl 1363.34156) Full Text: DOI
Liu, Sirun; Lv, Jingliang Asymptotic properties of a stochastic mutualism model. (Chinese. English summary) Zbl 1363.34149 J. Nat. Sci. Heilongjiang Univ. 33, No. 2, 162-169 (2016). MSC: 34C60 34C11 34D20 34D05 60H10 PDF BibTeX XML Cite \textit{S. Liu} and \textit{J. Lv}, J. Nat. Sci. Heilongjiang Univ. 33, No. 2, 162--169 (2016; Zbl 1363.34149) Full Text: DOI
Yang, Hongfu; Li, Xiaoyue; Yin, George Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. (English) Zbl 1354.60076 Discrete Contin. Dyn. Syst., Ser. B 21, No. 10, 3743-3766 (2016). MSC: 60H30 60H10 60J10 92D25 PDF BibTeX XML Cite \textit{H. Yang} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 10, 3743--3766 (2016; Zbl 1354.60076) Full Text: DOI
Rao, Shaobin; Gan, Xiaorong Permanence and global asymptotic stability of a stochastic predator-prey model with time delay. (English) Zbl 1363.34296 J. Qufu Norm. Univ., Nat. Sci. 42, No. 2, 19-26 (2016). MSC: 34K60 34K50 34K20 34K25 60H10 92D25 PDF BibTeX XML Cite \textit{S. Rao} and \textit{X. Gan}, J. Qufu Norm. Univ., Nat. Sci. 42, No. 2, 19--26 (2016; Zbl 1363.34296) Full Text: DOI
Wang, Bingjun; Gao, Hongjun; Li, Mei Analysis of a non-autonomous mutualism model driven by Levy jumps. (English) Zbl 1356.60109 Discrete Contin. Dyn. Syst., Ser. B 21, No. 4, 1189-1202 (2016). Reviewer: Melvin D. Lax (Long Beach) MSC: 60H30 60H10 60G51 34F05 92D25 34C60 34D05 PDF BibTeX XML Cite \textit{B. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 4, 1189--1202 (2016; Zbl 1356.60109) Full Text: DOI
Tian, Baodan; Zhong, Shouming; Liu, Zhijun Extinction and persistence of a nonautonomous stochastic food-chain system with impulsive perturbations. (English) Zbl 1347.34077 Int. J. Biomath. 9, No. 5, Article ID 1650077, 26 p. (2016). MSC: 34C60 34F05 60H10 92D25 34A37 34D05 PDF BibTeX XML Cite \textit{B. Tian} et al., Int. J. Biomath. 9, No. 5, Article ID 1650077, 26 p. (2016; Zbl 1347.34077) Full Text: DOI
Dieu, N. T.; Du, N. H.; Nguyen, H. D.; Yin, G. Protection zones for survival of species in random environment. (English) Zbl 1352.34069 SIAM J. Appl. Math. 76, No. 4, 1382-1402 (2016). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 34C60 92D40 34F05 60H10 92D25 PDF BibTeX XML Cite \textit{N. T. Dieu} et al., SIAM J. Appl. Math. 76, No. 4, 1382--1402 (2016; Zbl 1352.34069) Full Text: DOI
Dieu, N. T.; Nguyen, D. H.; Du, N. H.; Yin, G. Classification of asymptotic behavior in a stochastic SIR model. (English) Zbl 1343.34109 SIAM J. Appl. Dyn. Syst. 15, No. 2, 1062-1084 (2016). MSC: 34C60 34C12 60H10 92D25 34D05 34F05 92D30 PDF BibTeX XML Cite \textit{N. T. Dieu} et al., SIAM J. Appl. Dyn. Syst. 15, No. 2, 1062--1084 (2016; Zbl 1343.34109) Full Text: DOI
Li, Xiaoyue; Yin, George Logistic models with regime switching: permanence and ergodicity. (English) Zbl 1357.92064 J. Math. Anal. Appl. 441, No. 2, 593-611 (2016). MSC: 92D25 60J20 PDF BibTeX XML Cite \textit{X. Li} and \textit{G. Yin}, J. Math. Anal. Appl. 441, No. 2, 593--611 (2016; Zbl 1357.92064) Full Text: DOI
Du, Nguyen Huu; Nguyen, Dang Hai; Yin, G. George Conditions for permanence and ergodicity of certain stochastic predator-prey models. (English) Zbl 1338.34091 J. Appl. Probab. 53, No. 1, 187-202 (2016). MSC: 34C60 60H10 92D25 34D05 37A25 34F05 PDF BibTeX XML Cite \textit{N. H. Du} et al., J. Appl. Probab. 53, No. 1, 187--202 (2016; Zbl 1338.34091) Full Text: DOI Euclid
Bao, Jianhai; Shao, Jinghai Permanence and extinction of regime-switching predator-prey models. (English) Zbl 1337.60147 SIAM J. Math. Anal. 48, No. 1, 725-739 (2016). MSC: 60H30 60H10 60J60 92D25 PDF BibTeX XML Cite \textit{J. Bao} and \textit{J. Shao}, SIAM J. Math. Anal. 48, No. 1, 725--739 (2016; Zbl 1337.60147) Full Text: DOI arXiv
Meng, Xinzhu; Zhao, Shengnan; Feng, Tao; Zhang, Tonghua Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis. (English) Zbl 1354.92089 J. Math. Anal. Appl. 433, No. 1, 227-242 (2016). MSC: 92D30 PDF BibTeX XML Cite \textit{X. Meng} et al., J. Math. Anal. Appl. 433, No. 1, 227--242 (2016; Zbl 1354.92089) Full Text: DOI
Liu, Qun; Chen, Qingmei; Hu, Yuanyan Analysis of a stochastic mutualism model. (English) Zbl 07246121 Commun. Nonlinear Sci. Numer. Simul. 29, No. 1-3, 188-197 (2015). MSC: 34 60 PDF BibTeX XML Cite \textit{Q. Liu} et al., Commun. Nonlinear Sci. Numer. Simul. 29, No. 1--3, 188--197 (2015; Zbl 07246121) Full Text: DOI
Tan, Ronghua; Wang, Hailing; Xiang, Huili; Liu, Zhijun Dynamic analysis of a nonautonomous impulsive single-species system in a random environment. (English) Zbl 1422.60105 Adv. Difference Equ. 2015, Paper No. 218, 17 p. (2015). MSC: 60H10 92D25 34A37 34F05 PDF BibTeX XML Cite \textit{R. Tan} et al., Adv. Difference Equ. 2015, Paper No. 218, 17 p. (2015; Zbl 1422.60105) Full Text: DOI
Dong, Chunwei; Yin, Fancheng Permanence and extinction on stochastic logistic system with Markov switching. (Chinese. English summary) Zbl 1349.60089 J. Nat. Sci. Heilongjiang Univ. 32, No. 5, 571-579 (2015). MSC: 60H10 34F05 92D40 PDF BibTeX XML Cite \textit{C. Dong} and \textit{F. Yin}, J. Nat. Sci. Heilongjiang Univ. 32, No. 5, 571--579 (2015; Zbl 1349.60089) Full Text: DOI
Tan, Ronghua; Liu, Zhijun; Guo, Shengliang; Xiang, Huili On a nonautonomous competitive system subject to stochastic and impulsive perturbations. (English) Zbl 1338.92113 Appl. Math. Comput. 256, 702-714 (2015). MSC: 92D25 60H10 PDF BibTeX XML Cite \textit{R. Tan} et al., Appl. Math. Comput. 256, 702--714 (2015; Zbl 1338.92113) Full Text: DOI
Wang, Qing; Yu, Yongguang; Zhang, Shuo Dynamics of a general stochastic nonautonomous Lotka-Volterra model with delays and impulsive perturbations. (English) Zbl 1338.34161 Adv. Math. Phys. 2015, Article ID 824507, 17 p. (2015). MSC: 34K60 34K45 34K50 34K25 92D25 37C60 PDF BibTeX XML Cite \textit{Q. Wang} et al., Adv. Math. Phys. 2015, Article ID 824507, 17 p. (2015; Zbl 1338.34161) Full Text: DOI
Li, Dan; Cui, Jing’an; Zhang, Yan Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. (English) Zbl 1335.60094 Discrete Contin. Dyn. Syst., Ser. B 20, No. 7, 2069-2088 (2015). MSC: 60H10 60J60 60J75 60G51 92D25 62P10 62P12 PDF BibTeX XML Cite \textit{D. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 20, No. 7, 2069--2088 (2015; Zbl 1335.60094) Full Text: DOI
Liu, Meng; Bai, Chuanzhi A remark on a stochastic logistic model with Lévy jumps. (English) Zbl 1328.34050 Appl. Math. Comput. 251, 521-526 (2015). MSC: 34F05 34D05 60H10 PDF BibTeX XML Cite \textit{M. Liu} and \textit{C. Bai}, Appl. Math. Comput. 251, 521--526 (2015; Zbl 1328.34050) Full Text: DOI
Tang, Tingting; Teng, Zhidong; Li, Zhiming Threshold behavior in a class of stochastic SIRS epidemic models with nonlinear incidence. (English) Zbl 1343.92521 Stochastic Anal. Appl. 33, No. 6, 994-1019 (2015). MSC: 92D30 60H10 60H40 PDF BibTeX XML Cite \textit{T. Tang} et al., Stochastic Anal. Appl. 33, No. 6, 994--1019 (2015; Zbl 1343.92521) Full Text: DOI
Lu, Chun; Ma, Qiang; Ding, Xiaohua Persistence and extinction for stochastic logistic model with Lévy noise and impulsive perturbation. (English) Zbl 1329.60189 Electron. J. Differ. Equ. 2015, Paper No. 247, 14 p. (2015). MSC: 60H10 60G51 60J75 35R12 PDF BibTeX XML Cite \textit{C. Lu} et al., Electron. J. Differ. Equ. 2015, Paper No. 247, 14 p. (2015; Zbl 1329.60189) Full Text: EMIS
Li, Dan; Cui, Jing’an; Song, Guohua Permanence and extinction for a single-species system with jump-diffusion. (English) Zbl 1322.34068 J. Math. Anal. Appl. 430, No. 1, 438-464 (2015). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 34F05 34C60 34D05 92D25 PDF BibTeX XML Cite \textit{D. Li} et al., J. Math. Anal. Appl. 430, No. 1, 438--464 (2015; Zbl 1322.34068) Full Text: DOI
Liu, Lei; Shen, Yi New criteria on persistence in mean and extinction for stochastic competitive Lotka-Volterra systems with regime switching. (English) Zbl 1371.37141 J. Math. Anal. Appl. 430, No. 1, 306-323 (2015). MSC: 37N25 92D25 60H10 PDF BibTeX XML Cite \textit{L. Liu} and \textit{Y. Shen}, J. Math. Anal. Appl. 430, No. 1, 306--323 (2015; Zbl 1371.37141) Full Text: DOI
Han, Qixing; Jiang, Daqing; Ji, Chunyan Analysis of a delayed stochastic predator-prey model in a polluted environment. (English) Zbl 1427.92075 Appl. Math. Modelling 38, No. 13, 3067-3080 (2014). MSC: 92D25 92D40 34K50 PDF BibTeX XML Cite \textit{Q. Han} et al., Appl. Math. Modelling 38, No. 13, 3067--3080 (2014; Zbl 1427.92075) Full Text: DOI
Wu, Ruihua; Zou, Xiaoling; Wang, Ke Asymptotic properties of stochastic hybrid Gilpin-Ayala system with jumps. (English) Zbl 1338.60210 Appl. Math. Comput. 249, 53-66 (2014). MSC: 60J75 34D05 34F05 60J27 92D25 PDF BibTeX XML Cite \textit{R. Wu} et al., Appl. Math. Comput. 249, 53--66 (2014; Zbl 1338.60210) Full Text: DOI
Mandal, Partha Sarathi; Abbas, Syed; Banerjee, Malay A comparative study of deterministic and stochastic dynamics for a non-autonomous allelopathic phytoplankton model. (English) Zbl 1334.92355 Appl. Math. Comput. 238, 300-318 (2014). MSC: 92D25 PDF BibTeX XML Cite \textit{P. S. Mandal} et al., Appl. Math. Comput. 238, 300--318 (2014; Zbl 1334.92355) Full Text: DOI
Sun, Yan; Liu, Zhenwen; Zhao, Yanan; Jiang, Zhixia; Tan, Haijun Asymptotic behavior of stochastic \(SI\) system with linear perturbation. (Chinese. English summary) Zbl 1324.60058 J. Jilin Univ., Sci. 52, No. 6, 1196-1202 (2014). MSC: 60H10 92D40 92D30 PDF BibTeX XML Cite \textit{Y. Sun} et al., J. Jilin Univ., Sci. 52, No. 6, 1196--1202 (2014; Zbl 1324.60058) Full Text: DOI
Liu, Meng Dynamics of a stochastic Lotka-Volterra model with regime switching. (English) Zbl 1325.92072 J. Appl. Math. Comput. 45, No. 1-2, 327-349 (2014). MSC: 92D25 60H30 60H10 PDF BibTeX XML Cite \textit{M. Liu}, J. Appl. Math. Comput. 45, No. 1--2, 327--349 (2014; Zbl 1325.92072) Full Text: DOI
Wu, Ruihua; Zou, Xiaoling; Wang, Ke Dynamics of logistic systems driven by Lévy noise under regime switching. (English) Zbl 1296.60160 Electron. J. Differ. Equ. 2014, Paper No. 76, 16 p. (2014). MSC: 60H10 60J75 60J28 PDF BibTeX XML Cite \textit{R. Wu} et al., Electron. J. Differ. Equ. 2014, Paper No. 76, 16 p. (2014; Zbl 1296.60160) Full Text: EMIS
Qiu, Hong; Lv, Jingliang; Wang, Ke Two types of permanence of a stochastic mutualism model. (English) Zbl 1368.34063 Adv. Difference Equ. 2013, Paper No. 37, 17 p. (2013). MSC: 34C60 34F05 60H10 92D25 92D40 34D05 PDF BibTeX XML Cite \textit{H. Qiu} et al., Adv. Difference Equ. 2013, Paper No. 37, 17 p. (2013; Zbl 1368.34063) Full Text: DOI
Lv, Jingliang; Wang, Ke; Zou, Xiaoling Remarks on stochastic permanence of population models. (English) Zbl 1306.92046 J. Math. Anal. Appl. 408, No. 2, 561-571 (2013). MSC: 92D25 60H10 60J28 PDF BibTeX XML Cite \textit{J. Lv} et al., J. Math. Anal. Appl. 408, No. 2, 561--571 (2013; Zbl 1306.92046) Full Text: DOI