×

Modified Rodrigues parameters: an efficient representation of orientation in 3D vision and graphics. (English) Zbl 1433.68471

Summary: Modified Rodrigues parameters (MRPs) are triplets in \(\mathbb {R}^3\) bijectively and rationally mapped to quaternions through stereographic projection. We present here a compelling case for MRPs as a minimal degree-of-freedom parameterization of orientation through novel solutions to prominent problems in the fields of 3D vision and computer graphics. In our primary contribution, we show that the derivatives of a unit quaternion in terms of its MRPs are simple polynomial expressions of its scalar and vector part. Furthermore, we show that updates to unit quaternions from perturbations in parameter space can be computed without explicitly invoking the parameters in the computations. Based on the former, we introduce a novel approach for designing orientation splines by configuring their back-projections in 3D space. Finally, in the general topic of nonlinear optimization for geometric vision, we run performance analyses and provide comparisons on the convergence behavior of MRP parameterizations on the tasks of absolute orientation, exterior orientation and large-scale bundle adjustment of public datasets.

MSC:

68T45 Machine vision and scene understanding
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009) · Zbl 1147.65043
[2] Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: European Conference on Computer Vision (ECCV), pp. 29-42. Springer, Berlin Heidelberg (2010)
[3] Barr, AH; Currin, B; Gabriel, S; Hughes, JF, Smooth interpolation of orientations with angular velocity constraints using quaternions, SIGGRAPH Comput. Gr., 26, 313-320, (1992)
[4] Bauchau, OA; Trainelli, L, The vectorial parameterization of rotation, Nonlinear Dyn., 32, 71-92, (2003) · Zbl 1062.70505
[5] Boumal, N.: Interpolation and regression of rotation matrices. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information, pp. 345-352. Springer, Berlin, Heidelberg (2013) · Zbl 1405.68405
[6] Briales, J., Gonzalez-Jimenez, J.: Convex global 3D registration with Lagrangian duality. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
[7] Carlone, L., Rosen, D.M., Calafiore, G., Leonard, J.J., Dellaert, F.: Lagrangian duality in 3D SLAM: verification techniques and optimal solutions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 125-132. IEEE (2015)
[8] Casler Jr, R.J., Penkar, R.C.: Multiaxis robot control having improved continuous path operation . US Patent 4,772,831 (1988)
[9] Catmull, E; Rom, R, A class of local interpolating splines, Comput. Aided Geom. Des., 74, 317-326, (1974)
[10] Chatterjee, A., Madhav Govindu, V.: Efficient and robust large-scale rotation averaging. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 521-528 (2013)
[11] Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, Berlin (2013) · Zbl 1233.68001
[12] Dai, Y., Trumpf, J., Li, H., Barnes, N., Hartley, R.: Rotation averaging with application to camera-rig calibration. In: Asian Conference on Computer Vision, pp. 335-346. Springer (2009)
[13] Dam, E.B., Koch, M., Lillholm, M.: Quaternions, interpolation and animation. Tech. Rep. DIKU-TR-98/5, Department of Computer Science. University of Copenhagen, Copenhagen (1998)
[14] Dash, AK; Chen, IM; Yeo, SH; Yang, G, Workspace generation and planning singularity-free path for parallel manipulators, Mech. Mach. Theory, 40, 776-805, (2005) · Zbl 1113.70008
[15] Davenport, P.B.: A vector approach to the algebra of rotations with applications, NASA technical note, vol. 4696. National Aeronautics and Space Administration (1968)
[16] Diebel, J, Representing attitude: Euler angles, unit quaternions, and rotation vectors, Matrix, 58, 1-35, (2006)
[17] Dietz, R; Hoschek, J; Jüttler, B, An algebraic approach to curves and surfaces on the sphere and on other quadrics, Comput. Aided Geom. Des., 10, 211-229, (1993) · Zbl 0781.65009
[18] Drummond, T; Cipolla, R, Application of Lie algebras to visual servoing, Int. J. Comput. Vis., 37, 21-41, (2000) · Zbl 0991.68139
[19] Drummond, T; Cipolla, R, Real-time visual tracking of complex structures, IEEE Trans. Pattern Anal. Mach. Intell., 24, 932-946, (2002)
[20] Duff, T.: Splines in animation and modeling. State of the Art in Image Synthesis (SIGGRAPH’86 course notes no. 15, Dallas, TX) (1986)
[21] Farouki, RT; Al-Kandari, M; Sakkalis, T, Structural invariance of spatial Pythagorean hodographs, Comput. Aided Geom. Des., 19, 395-407, (2002)
[22] Feng-yun, L; Tian-sheng, L, Development of a robot system for complex surfaces polishing based on CL data, Int. J. Adv. Manuf. Technol., 26, 1132-1137, (2005)
[23] Gallego, G; Yezzi, A, A compact formula for the derivative of a 3-D rotation in exponential coordinates, J. Math. Imag. Vis., 51, 378-384, (2015) · Zbl 1386.15056
[24] Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averaging using the Weiszfeld algorithm. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3041-3048. IEEE (2011)
[25] Hartley, R; Trumpf, J; Dai, Y; Li, H, Rotation averaging, Int. J. Comput. Vis., 103, 267-305, (2013) · Zbl 1270.68346
[26] Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518 · Zbl 1072.68104
[27] Heise, R., MacDonald, B.A.: Quaternions and motion interpolation: A tutorial. In: New Advances in Computer Graphics, pp. 229-243. Springer (1989)
[28] Horn, BK, Closed-form solution of absolute orientation using unit quaternions, JOSA A, 4, 629-642, (1987)
[29] Horn, BK; Hilden, HM; Negahdaripour, S, Closed-form solution of absolute orientation using orthonormal matrices, JOSA A, 5, 1127-1135, (1988)
[30] Hughes, J.F., van Dam, A., McGuire, M., Sklar, D.F., Foley, J.D., Feiner, S.K., Akeley, K.: Computer Graphics: Principles and Practice. The Systems Programming Series. Addison-Wesley, Boston (2014)
[31] Johnstone, J.K., Williams, J.P.: Rational control of orientation for animation. In: Graphics Interface, pp. 179-179. Canadian Information Processing Society, (1995)
[32] Kim, M.J., Kim, M.S., Shin, S.Y.: A general construction scheme for unit quaternion curves with simple high order derivatives. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 369-376. ACM (1995)
[33] Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality (ISMAR), pp. 225-234. IEEE (2007)
[34] Levenberg, K, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168, (1944) · Zbl 0063.03501
[35] Lourakis, M.: Sparse non-linear least squares optimization for geometric vision. European Conference on Computer Vision (ECCV) 2, 43-56 (2010)
[36] Lourakis, M.: An efficient solution to absolute orientation. In: International Conference on Pattern Recognition (ICPR), pp. 3816-3819 (2016)
[37] Lourakis, M., Argyros, A.: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Software 36(1), 1-30 (2009). www.ics.forth.gr/ lourakis/sba · Zbl 1364.65052
[38] Lourakis, M., Zabulis, X.: Model-based pose estimation for rigid objects. In: International Conference on Computer Vision Systems (ICVS), pp. 83-92. Springer (2013). www.ics.forth.gr/ lourakis/posest
[39] Lui, V., Drummond, T.: An iterative 5-pt algorithm for fast and robust essential matrix estimation. In: BMVC (2013)
[40] Markley, F.L., Crassidis, J.L.: Fundamentals of Spacecraft Attitude Determination and Control, Space Technology Library. Springer, Berlin (2014) · Zbl 1381.70006
[41] Markley, FL; Mortari, D, Quaternion attitude estimation using vector observations, J. Astronaut. Sci., 48, 359-380, (2000)
[42] Marquardt, DW, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431-441, (1963) · Zbl 0112.10505
[43] Olsson, C., Eriksson, A.: Solving quadratically constrained geometrical problems using lagrangian duality. In: International Conference on Pattern Recognition (ICPR), pp. 1-5. IEEE (2008)
[44] Pletinckx, D, Quaternion calculus as a basic tool in computer graphics, Vis. Comput., 5, 2-13, (1989) · Zbl 0668.65012
[45] Pollefeys, M; Gool, L; Vergauwen, M; Verbiest, F; Cornelis, K; Tops, J; Koch, R, Visual modeling with a hand-held camera, Int. J. Comput. Vis., 59, 207-232, (2004)
[46] Ramamoorthi, R., Ball, C., Barr, A.H.: Dynamic splines with constraints for animation. Tech. Rep. 03. California Institute of Technology, Pasadena, CA (1997)
[47] Roberts, K.S., Bishop, G., Ganapathy, S.K.: Smooth interpolation of rotational motions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 724-729 (1988)
[48] Rodrigues, O, Des lois géométriques qui régissent LES déplacements d’un système solide dans l’espace, et de la variation des cordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent LES produire, J. de Mathématiques Pures et Appliquées, 5, 380-440, (1840)
[49] Rose, C; Cohen, MF; Bodenheimer, B, Verbs and adverbs: multidimensional motion interpolation, IEEE Comput. Gr. Appl., 18, 32-40, (1998)
[50] Schaub, H; Junkins, JL, Stereographic orientation parameters for attitude dynamics: a generalization of the rodrigues parameters, J. Astronaut. Sci., 44, 1-19, (1996)
[51] Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series, Reston (2003) · Zbl 1194.70001
[52] Schaub, H; Tsiotras, P; Junkins, JL, Principal rotation representations of proper n\(× \) n orthogonal matrices, Int. J. Eng. Sci., 33, 2277-2295, (1995) · Zbl 0900.70028
[53] Schulz, V., Bock, H., Longman, R.: Shortest paths for satellite mounted robot manipulators. In: Computational optimal control, pp. 357-366. Springer (1994) · Zbl 0800.93867
[54] Selig, J.M.: Lie groups and lie algebras in robotics. In: Computational Noncommutative Algebra and Applications, pp. 101-125. Springer (2004) · Zbl 1111.70003
[55] Shen, Y., Huper, K., Leite, F.S.: Smooth interpolation of orientation by rolling and wrapping for robot motion planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 113-118. IEEE (2006)
[56] Shoemake, K, Animating rotation with quaternion curves, SIGGRAPH Comput. Gr., 19, 245-254, (1985)
[57] Shoemake, K.: Quaternion calculus and fast animation, computer animation: 3-D motion specification and control. SIGGRAPH ’87 tutorial (1987)
[58] Shuster, MD, A survey of attitude representations, J. Astronaut. Sci., 41, 439-517, (1993)
[59] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, New York (2010) · Zbl 1219.68009
[60] Taylor, C.J., Kriegman, D.J.: Minimization on the Lie group SO(3) and related manifolds. Tech. Rep. 9405. Yale University, New Haven, CT (1994)
[61] Terzakis, G., Culverhouse, P., Bugmann, G., Sharma, S., Sutton, R.: A recipe on the parameterization of rotation matrices for non-linear optimization using quaternions. Tech. Rep. 004, School of Marine Science and Engineering. Plymouth University, (2012)
[62] Tsiotras, P; Junkins, JL; Schaub, H, Higher-order Cayley transforms with applications to attitude representations, J. Guid. Control Dyn., 20, 528-534, (1997) · Zbl 0885.93010
[63] Tsiotras, P; Longuski, JM, A new parameterization of the attitude kinematics, J. Astronaut. Sci., 43, 243-262, (1995)
[64] Vicci, L.: Quaternions and rotations in 3-space: The algebra and its geometric interpretation. Tech. Rep. 01-014, Dept. of Computer Science. UNC at Chapel Hill (2001)
[65] Wahba, G, A least squares estimate of satellite attitude, SIAM Rev., 7, 409-409, (1965)
[66] Watt, A.: 3D computer graphics. Addison-Wesley, Boston (1993)
[67] Watt, A.: 3D Computer Graphics, 3rd edn. Addison-Wesley, Boston (2000)
[68] Wiener, T.F.: Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments. Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Mass, USA (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.