×

Relation between stereographic projection and concurrence measure in bipartite pure states. (English) Zbl 1358.81038

Summary: One-qubit pure states, living on the surface of Bloch sphere, can be mapped onto the usual complex plane by using stereographic projection. In this paper, after reviewing the entanglement of two-qubit pure state, it is shown that the quaternionic stereographic projection is related to concurrence measure. This is due to the fact that every two-qubit state, in ordinary complex field, corresponds to the one-qubit state in quaternionic skew field, called quaterbit. Like the one-qubit states in complex field, the stereographic projection maps every quaterbit onto a quaternion number whose complex and quaternionic parts are related to Schmidt and concurrence terms respectively. Rather, the same relation is established for three-qubit state under octonionic stereographic projection which means that if the state is bi-separable then, quaternionic and octonionic terms vanish. Finally, we generalize recent consequences to \(2\otimes N\) and \(4\otimes N\) dimensional Hilbert spaces \((N\geq 2)\) and show that, after stereographic projection, the quaternionic and octonionic terms are entanglement sensitive. These trends are easily confirmed by direct computation for general multi-particle W- and GHZ-states.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Nakahara, M.: Geometry, Topology and Physics. Institute of Physics Publishing, Philadelphia (1990) · Zbl 0764.53001
[2] Duf, MJ, No article title, Phys. Rev. D, 76, 025017 (2007)
[3] Levay, P., No article title, Phys. Rev. D, 74, 024030 (2006)
[4] Rios, M.: Extremal Black Holes as Qudits (2012). arXiv:1102.1193v2
[5] Rañada, A.F.: A topological theory of the electromagnetic field. Lett. Math. Phys. 18, 97-106 (1989) · Zbl 0687.57015
[6] życzkowski, K.: Geometry of Quantum States An Introduction to Quantum Entanglement. Cambridge University Press, New York (2006) · Zbl 1146.81004
[7] Mosseri, R.; Dandoloff, R., No article title, J. Phys. A: Math. Gen., 34, 10243 (2001) · Zbl 0993.81010
[8] Najarbashi, G.; Ahadpour, S.; Fasihi, MA; Tavakoli, Y., No article title, J. Phys. A: Math. Theor., 40, 6481-6489 (2007) · Zbl 1113.81026
[9] Najarbashi, G.; Seifi, B.; Mirzaei, S., No article title, Quantum Inf. Process, 15, 509-528 (2016) · Zbl 1333.81039
[10] Najarbashi, G., Seifi, B.: Quantum phase transition in the Dzyaloshinskii-Moriya interaction with inhomogeneous magnetic field: Geometric approach. arXiv:1512.04029 (2015) · Zbl 1384.81016
[11] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[12] życzkowski, K.; Horodecki, P.; Sanpera, A.; Lewenstein, M., No article title, Phys. Rev. A, 58, 833 (1998)
[13] Chruscinski, D.; Kossakowski, A., No article title, Phys. Lett. A, 373, 2301-2305 (2009) · Zbl 1231.81013
[14] Schirmer, SG; Zhang, T.; Leahy, JV, No article title, J. Phys. A: Math. Gen., 37, 1389-1402 (2004) · Zbl 1057.81067
[15] Lévay, P., No article title, J. Phys. A: Math. Gen., 37, 1821-1841 (2004) · Zbl 1067.81049
[16] Lévay, P., No article title, J. Phys. A: Math. Gen., 39, 9533-9545 (2006) · Zbl 1095.81012
[17] Lévay, P., No article title, Phys. Rev. A, 71, 012334 (2005) · Zbl 1227.81079
[18] Mäkelä, H., Messina, A.: Phys. Scr. 014054 (2010)
[19] Ali, M.; Rau, ARP; Alber, G., No article title, Phys. Rev. A, 82, 069902 (2010)
[20] Rau, ARP, No article title, J. Phys. A: Math. Theor., 42, 412002 (2009) · Zbl 1179.81037
[21] Fiscaletti, D.; Licata, I., No article title, Int. J. Theor. Phys., 54, 2362 (2015) · Zbl 1326.81027
[22] Bernevig, BA; Chen, HD, No article title, J. Phys. A: Math. Gen., 36, 8325 (2003) · Zbl 1044.81020
[23] Lee, JW; Kim, CH; Lee, EK; Kim, J.; Lee, S., No article title, Quantum Inf. Process, 1, 129-134 (2002)
[24] Akhtarshenas, SJ, No article title, J. Phys. A: Math. Gen., 38, 6777-6784 (2005) · Zbl 1073.81019
[25] Bennett, CH; Divincenzo, DP; Smolin, JA; Wotter, WK, No article title, Phys. Rev. A, 54, 3824-3851 (1996) · Zbl 1371.81041
[26] Wootters, WK, No article title, Phys. Rev. Lett., 80, 2245-2248 (1998) · Zbl 1368.81047
[27] Hill, S.; Wootters, WK, No article title, Phys. Rev. Lett., 78, 5022-5025 (1997)
[28] Li, YQ; Zhu, GQ, No article title, Front. Phys. China, 3, 250257 (2008)
[29] Liu, J.; Zhou, L.; Sheng, YB, No article title, Chin. Phys. B, 24, 070309 (2015)
[30] Zhou, L.; Sheng, YB, No article title, Phys. Rev. A, 90, 024301 (2014)
[31] Sheng, YB; Guo, R.; Pan, J.; Zhou, L.; Wang, XF, No article title, Quantum Inf. Process, 14, 963-978 (2015) · Zbl 1311.81040
[32] Borsten, L.; Dahanayake, D.; Duff, MJ; Ebrahim, H.; Rubens, W., No article title, Phys. Rep., 471, 113-219 (2009)
[33] Bekenstein, JD, No article title, Phys. Rev. D, 7, 2333-2346 (1973) · Zbl 1369.83037
[34] Hawking, SW, No article title, Commun. Math. Phys., 43, 199-220 (1975) · Zbl 1378.83040
[35] Miyake, A.; Wadati, M., No article title, Quant. Info. Comp., 2, 540-555 (2002)
[36] Borsten, L.; Duff, MJ; Marrani, A.; Rubens, W., No article title, Eur. Phys. J. Plus, 126, 37 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.