×

Computing eigenvalues occurring in continuation methods with the Jacobi-Davidson QZ method. (English) Zbl 0899.65033

The paper is concerned with the computation of stationary solutions of a differential system, involving one or more physical parameters, using a technique called “continuation method”. In order to determine whether a stationary solution is stable and to find the bifurcation points of the system, the rightmost eigenvalues of a related generalized eigenvalue problem are computed. The QZ method of Jacobi-Davidson, recently developed [SIAM J. Sci. Comput., to appear, or Preprint No. 941 Dept. Math., Utrecht Univ., Netherland] is used for computing the eigenvalues. As an application, the 2D Rayleigh-Bernard problem is considered. Numerical examples are performed for illustrate the performance of the Jacobi-Davidson QZ method.

MSC:

65H17 Numerical solution of nonlinear eigenvalue and eigenvector problems
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations

Software:

JDQR; JDQZ
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brand, C. W., An incomplete-factorization preconditioning using repeated red-black ordering, Numer. Math., 61, 433 (1992) · Zbl 0772.65018
[2] Brown, P. N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput., 11, 450 (1990) · Zbl 0708.65049
[3] Dijkstra, H. A.; Molemaker, M. J.; van der Ploeg, A.; Botta, E. F.F., An efficient code to compute non-parallel steady flows and their linear stability, Comput. Fluids, 24, 415 (1995) · Zbl 0848.76056
[4] Fokkema, D. R.; Sleijpen, G. L.G.; van der Vorst, H. A., Accelerated inexact Newton schemes for large systems of nonlinear equations, SIAM J. Sci. Comput. (1995)
[5] Fokkema, D. R.; Sleijpen, G. L.G.; van der Vorst, H. A., Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput. (1997) · Zbl 0924.65027
[6] Golub, G. H.; van Loan, C. F., Matrix Computations (1989), John Hopkins Univ. Press: John Hopkins Univ. Press Baltimore · Zbl 0733.65016
[7] van der Vorst, H. A.; Golub, G. H., 150 Years old and still alive: Eigenproblems, The State of the Art in Numerical Analysis (1997), Clarendon Press: Clarendon Press Oxford, p. 93- · Zbl 0881.65026
[8] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, (Rabinowicz, P. H., Applications of Bifurcation Theory (1977), Academic Press: Academic Press New York), 359 · Zbl 0581.65043
[9] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856 (1986) · Zbl 0599.65018
[10] Seydel, R., Practical Bifurcation and Stability Analysis (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0806.34028
[11] Sleijpen, G. L.G.; Booten, A. G.L.; Fokkema, D. R.; van der Vorst, H. A., Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36, 595 (1996) · Zbl 0861.65035
[12] Sleijpen, G. L.G.; Fokkema, D. R., BiCGstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal. (ETNA), 1, 11 (1993) · Zbl 0820.65016
[13] Stewart, W. J.; Jennings, A., A simultaneous iteration algorithm for real matrices, ACM Trans. Math. Software, 7, 184 (1981) · Zbl 0455.65028
[14] Tiesinga, G., Block preconditioned BiCGstab(2) for solving the Navier-Stokes equations, Z. Angew. Math. Mech., 76, 563 (1996) · Zbl 0900.76089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.