×

Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube. (English) Zbl 1153.80311

Summary: A three-dimensional numerical model of Ranque-Hilsch vortex tube has been developed using the commercial CFD code (Star-CD) to analyze the flow parameters and energy separation mechanism inside the tube. Investigations have been done on the variation of fluid properties and flow parameters as the fluid particles progress in the flow field by tracking different particles exiting through the hot and cold end. Fluid properties like stagnation temperature, static temperature, static pressure and total pressure and flow parameters like axial, radial and swirl velocities are obtained along the axial and radial directions to understand the flow behaviour inside the tube. The presence of free vortex zone inside the tube also has been investigated. Possible energy transfer mechanisms are discussed and an estimate has been made on the magnitude of energy transfer from the cold end exit flow to hot end exit flow. Effects of secondary circulation and length of the tube on energy separation also have been evaluated.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

STAR-CD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ranque, G. J.: Experiences sur la detente giratoire avec productions simultanes d’un echappement d’air chaud et d’un echappement d’air froid, J. phys. Radium 4, No. 7, 112-114 (1933)
[2] Hilsch, R.: The use of the expansion of gases in a centrifugal field as cooling process, Rev. sci. Instrum. 18, No. 2, 108-113 (1947)
[3] Gutsol, A. F.: The ranque effect, Phys.-usp. 40, No. 6, 639-658 (1997)
[4] Ahlborn, B.; Groves, S.: Secondary flow in vortex tube, Fluid dyn. Res. 21, 73-86 (1997)
[5] Kurosaka, M.: Acoustic streaming in swirl flow and the ranque – hilsch (vortex-tube) effect, J. fluid mech. 124, 139-172 (1982)
[6] Frohlingsdorf, W.; Unger, H.: Numerical investigations of the compressible flow and the energy separation in ranque – hilsch vortex tube, Int. J. Heat mass transfer 42, 415-422 (1999) · Zbl 0976.76048 · doi:10.1016/S0017-9310(98)00191-4
[7] Aljuwayhel, N. F.; Nellis, G. F.; Klein, S. A.: Parametric and internal study of the vortex tube using CFD model, Int. J. Refrig. 28, 442-450 (2005)
[8] Skye, H. M.; Nellis, G. F.; Klein, S. A.: Comparison of CFD analysis to empirical data in a commercial vortex tube, Int. J. Refrig. 29, 71-80 (2006)
[9] Eiamsa-Ard, S.; Promvonge, P.: Numerical investigation of the thermal separation in a ranque – hilsch vortex tube, Int. J. Heat mass transfer 50, 821-832 (2007) · Zbl 1124.80323 · doi:10.1016/j.ijheatmasstransfer.2006.08.018
[10] Star-CD, Version 3.10A: Methodology and User Guide, Computational Dynamics Limited, UK, 1999.
[11] Yakhot, V.; Orszag, S. A.: Renormalization group analysis of turbulence – I: Basic theory, J. sci. Comput. 1, 1-51 (1986) · Zbl 0648.76040 · doi:10.1007/BF01061452
[12] Farouk, T.; Farouk, B.: Large eddy simulations of the flow field and temperature separation in the ranque – hilsch vortex tube, Int. J. Heat mass transfer 50, 4724-4735 (2007) · Zbl 1183.76776 · doi:10.1016/j.ijheatmasstransfer.2007.03.048
[13] Behera, U.; Paul, P. J.; Kasthurirengan, S.; Karunanithi, R.; Ram, S. N.; Dinesh, K.; Jacob, S.: CFD analysis and experimental investigations towards optimizing the parameters of ranque – hilsch vortex tube, Int. J. Heat mass transfer 48, 1961-1973 (2005)
[14] Ahlborn, B.; Keller, J. U.; Staudt, R.; Treitz, G.; Rebhan, E.: Limits of temperature separation in a vortex tube, Phys. D: appl. Phys. 27, 480-488 (1994)
[15] Hartnett, J. P.; Eckert, E. R. G.: Experimental study of the velocity and temperature distribution in a high-velocity vortex-type flow, publication of heat transfer laboratory, (1956)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.