×

Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces. (English) Zbl 0937.74066

Summary: A novel methodology is presented for the modeling of crystallographic texture based on the application of finite elements to represent and compute the orientation distribution function (ODF) over explicit discretizations of orientation space. Various orientation spaces are examined for this purpose. The neo-Eulerian axis and angle spaces of Frank are preferred over the conventional Euler angle spaces for their superior properties. Properties of the neo-Eulerian spaces required by the modeling are derived. These include the reduction of the spaces under crystal symmetries to fundamental regions, the consequent boundary symmetry relationships, and the various Riemannian metrical properties of the spaces. The structure of crystal flow generated under the uniaxial extension of FCC crystals is examined over the cubic fundamental region of Rodrigues’ space. Stabilized finite element schemes for the ODF conservation equation, developed previously for the texturing of planar polycrystals, are extended to the three-dimensional texturing. Properties of the schemes are illustrated by application to the texturing of FCC polycrystals over Rodrigues’ space.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E15 Crystalline structure
82D25 Statistical mechanics of crystals

Software:

LASPack
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asaro, R. J.; Needleman, A., Texture development and strain hardening in rate dependent polycrystals, Acta Metall., 33, 923-953 (1985)
[2] Molinari, A.; Canova, G. R.; Ahzi, S., A self consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., 35, 2983-2994 (1987)
[3] Mathur, K. K.; Dawson, P. R., On modeling the development of crystallographic texture in bulk forming processes, Int. J. Plast., 5, 67-94 (1989)
[4] Bronkhorst, C. A.; Kalidindi, S. R.; Anand, L., Evolution of crystallographic texture during the deformation of FCC metals, (Lowe, T. C.; etal., Modeling the Deformation of Crystalline Solids (1991), The Minerals, Metals and Materials Society: The Minerals, Metals and Materials Society Warrendale)
[5] Beaudoin, A. J.; Mathur, K. K.; Dawson, P. R.; Johnson, G. C., Three-dimensional deformation process simulation with explicit use of polycrystalline plasticity models, Int. J. Plast., 9, 833-860 (1993) · Zbl 0800.73480
[6] Dawson, P. R.; Chastel, Y. B.; Sarma, G. B.; Beaudoin, A. J., Simulating texture evolution in Fe-3
[7] Clément, A.; Coulomb, P., Eulerian simulation of deformation textures, Scripta Metall., 13, 899-901 (1979)
[8] Clément, A., Prediction of deformation texture using a physical principle of conservation, Mater. Sci. Engrg., 55, 203-210 (1982)
[9] Arminjon, M., Sur le champ de rotation des cristaux dans un polycristal déformé plastiquement, J. Méc. Th. Appl., 6, 511 (1987) · Zbl 0614.73003
[10] Rashid, M. M., Texture evolution and plastic response of two-dimensional polycrystals, J. Mech. Phys. Solids, 5, 1009-1029 (1992) · Zbl 0825.73071
[11] Dafalias, Y. F., Planar double-slip micromechanical model for polycrystal plasticity, J. Engrg. Mech., 119, 1260-1283 (1993)
[12] Prantil, V. C.; Jenkins, J. T.; Dawson, P. R., An analysis of texture and plastic spin for planar polycrystals, J. Mech. Phys. Solids, 41, 1357-1382 (1993) · Zbl 0780.73067
[13] Esling, C.; Bunge, H. J.; Muller, J., Description of texture change by a rotation field, (Kallend, J. S.; Gottstein, G., Eighth International Conference on Textures of Materials (1988), The Metallurgical Society)
[14] Klien, H.; Esling, C.; Bunge, H. J., Model calculations of deformation textures on the basis of orientation flow fields, (Kallend, J. S.; Gottstein, G., Eighth Int. Conf. on Textures of Materials (1988), The Metallurgical Society)
[15] Arminjon, M.; Imbault, D., An analytical micro-macro model for textured polycrystals at large plastic strains, Int. J. Plast., 10, 7, 825-847 (1994)
[16] Morawiec, A., The rotation rate field and geometry of orientation space, J. Appl. Cryst., 23, 374-377 (1990)
[17] Onat, E. T.; Leckie, F. A., Representation of mechanical behavior in the presence of changing internal structure, J. Appl. Mech., 55, 1-10 (1988)
[18] Advani, S. G.; Tucker, C. L., The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., 31, 751-784 (1987)
[19] Advani, S. G.; Tucker, C. L., Closure approximations for three-dimensional structure tensors, J. Rheol., 34, 367-386 (1990)
[20] Zhang, Y.; Jenkins, J. T., The evolution of the anisotropy of a polycrystalline aggregate, J. Mech. Phys. Solids, 41, 1213-1243 (1993) · Zbl 0786.73067
[21] Sam, D. D.; Onat, E. T.; Etingof, P. I.; Adams, B. L., Coordinate free tensorial representation of the orientation distribution function with harmonic polynomials, Textures and Microstructures, 21, 233-250 (1993)
[22] Kumar, A.; Dawson, P. R., The simulation of texture evolution with finite elements over orientation space—I. Development, Comp. Methods Appl. Mech. Engrg., 130, 227-246 (1996) · Zbl 0861.73073
[23] Johnson, C., Streamline diffusion finite element method for compressible and incompressible fluid flow, (Chung, T. J., Finite Elements in Fluids, Vol. 8 (1992), Hemisphere Publishing Corporation) · Zbl 0694.76036
[24] Kumar, A.; Dawson, P. R., The simulation of texture evolution with finite elements over orientation space—II. Application to planar crystals, Comp. Methods Appl. Mech. Engrg., 130, 247-261 (1996) · Zbl 0861.73073
[25] Kumar, A.; Dawson, P. R., The simulation of texture evolution during bulk deformation processes using finite elements over orientation space, (Proc. Fifth Int. Conf. on Numerical Methods in Industrial Forming Processes. Proc. Fifth Int. Conf. on Numerical Methods in Industrial Forming Processes, Ithaca (1995))
[26] Kumar, A.; Dawson, P. R., Polycrystal plasticity modeling of bulk forming with finite elements over orientation space, Comp. Mech., 17, 10-25 (1995) · Zbl 0841.73024
[27] Frank, F. C., Orientation mapping, (Kallend, J. S.; Gottstein, G., Eighth Int. Conf. on Textures of Materials (1988), The Metallurgical Society)
[28] Frank, F. C., The conformal neo-Eulerian orientation map, Phil. Mag. A, 65, 1141-1149 (1992)
[29] Angeles, J., Rational Kinematics (1988), Springer Verlag: Springer Verlag New York · Zbl 0706.70003
[30] Bunge, H. J., Texture Analysis in Materials Science (1982), Butterworths: Butterworths London
[31] Ibe, G.; Lücke, K., Description of orientation distributions of cubic crystals by means of 3-D rotation coordinates, Texture, 1, 87-98 (1972)
[32] Hansen, J.; Pospiech, J.; Lücke, K., Tables for Texture Analysis of Cubic Crystals (1978), Springer Verlag: Springer Verlag New York
[33] Kocks, U. F., A symmetric set of Euler angles and oblique orientation space sections, (Kallend, J. S.; Gottstein, G., Eighth Int. Conf. on Textures of Materials (1988), The Metallurgical Society)
[34] Wenk, H. R.; Kocks, U. F., The representation of orientation distributions, Metal. Trans., 18A, 1083-1092 (1987)
[35] Becker, S.; Panchanadeeswaran, S., Crystal rotations represented as Rodrigues vectors, Text. Microstr., 10, 167-194 (1989)
[36] Neumann, P., Representation of orientations of symmetrical objects by Rodrigues vectors, Text. Microstr., 14-18, 53-58 (1991)
[37] Heinz, A.; Neumann, P., Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals, Acta Cryst., A47, 780-789 (1991) · Zbl 1188.82100
[38] Neumann, P., The role of the geodesic and stereographic projections for the visualization of directions, rotations, and textures, Phys. Stat. Sol. (A), 131, 555-567 (1992)
[39] Altmann, S. L., Rotations, Quaternions and Double Groups (1986), Oxford University Press: Oxford University Press Oxford · Zbl 0683.20037
[40] Morawiec, A.; Pospiech, J., Some information on quaternions useful in texture calculations, Textures and Microstructures, 10, 211-216 (1989)
[41] Dluzewski, P. H., Crystal orientation spaces and remarks on the modelling of polycrystal anisotropy, J. Mech. Phys. Solids, 39, 651-661 (1991) · Zbl 0850.73036
[42] Stoker, J. J., Differential Geometry (1969), Wiley-Interscience: Wiley-Interscience New York · Zbl 0182.54601
[43] Kreyzig, E., Introduction to Differential Geometry and Riemannian Geometry (1968), University of Toronto Press: University of Toronto Press Birkenhead
[44] Hand, G., J. Fluid Mech., 13, 33-46 (1962)
[45] Macmillan, E. H., Slow flows of anisotropic fluids, J. Rheol., 33, 1071-1105 (1989) · Zbl 0693.76023
[46] Boyce, M. C.; Parks, D. M.; Argon, A. S., Mech. Mater., 7, 15 (1988)
[47] Arruda, E. M.; Boyce, M. C., (Boehler, J. P.; Khan, A. S., Anisotropy and Localization of Deformation (1991), Elsevier Applied Science: Elsevier Applied Science London)
[48] Wu, P. D.; Van Der Giessen, E., On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427-456 (1993) · Zbl 0825.73103
[49] Onat, E. T., Representation of Mechanical behavior in the presence of internal damage, Eng. Frac. Mech., 25, 605-614 (1986)
[50] Onat, E. T., Effective properties of elastic materials that contain penny shaped voids, Int. J. Engrg. Science, 22, 1013-1021 (1984) · Zbl 0564.73089
[51] Adams, B. L.; Boehler, J. P.; Guidi, M.; Onat, E. T., Group theory and representation of microstructure and mechanical behavior of polycrystals, J. Mech. Phys. Solids, 40, 723-737 (1992) · Zbl 0760.73058
[52] Asaro, R. J., Micromechanics of crystals and polycrystals, (Chung, T. J., Advances in Applied Mechanics, Vol. 23 (1983), Academic Press Inc: Academic Press Inc New York) · Zbl 0294.73078
[53] Kumar, A.; Dawson, P. R.; Hughes, D. A., An Analysis of FCC Texture Development over Rodrigues’ Space (1996), in preparation
[54] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (1987), Cambridge University Press: Cambridge University Press Cambridge
[55] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation, Comp. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[56] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comp. Methods Appl. Mech. Engrg., 54, 341-355 (1986) · Zbl 0622.76074
[57] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 1-18 (1986) · Zbl 0609.76020
[58] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp., 54, 107-129 (1990) · Zbl 0685.65086
[59] Johnson, C., A new approach to algorithms for convection problems which are based on exact transport and projection, Comp. Methods Appl. Mech. Engrg., 100, 45-62 (1992) · Zbl 0825.76413
[60] Hansbo, P.; Szepessy, A., A velocity pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comp. Methods Appl. Mech. Engrg., 84, 175-192 (1990) · Zbl 0716.76048
[61] Hansbo, P., The characteristic streamline diffusion method for convection-diffusion problems, Comp. Methods Appl. Mech. Engrg., 96, 239-253 (1992) · Zbl 0753.76095
[62] Hansbo, P., The characteristic streamline diffusion method for the time independent incompressible Navier-Stokes equations, Comp. Methods Appl. Mech. Engrg., 99, 171-186 (1992) · Zbl 0825.76423
[63] Douglas, J.; Russel, T., Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885 (1982) · Zbl 0492.65051
[64] Morton, K. W., Generalized Galerkin methods for hyperbolic problems, Comp. Methods Appl. Mech. Engrg., 52, 847-871 (1985) · Zbl 0568.76007
[65] Skalický, T., (LASPack Reference Manual (1995), Dresden University of Technology: Dresden University of Technology Dresden)
[66] Canova, G. R.; Wenk, H. R.; Molinari, A., Deformation modelling of multi-phase polycrystals: Case of a quartz-mica aggregate, Acta Metall., 40, 1519-1530 (1992)
[67] Tomé, C. N.; Lebensohn, R. A.; Kocks, U. F., A model for texture development dominated by deformation twinning: Application to zirconium alloys, Acta Metall., 39, 2667-2680 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.