×

PDF simulations of a bluff-body stabilized flow. (English) Zbl 0985.76073

Summary: Three different probability density function (PDF) algorithms have been applied to investigate a constant-density bluff-body stabilized flow using the same turbulence models and the same boundary conditions. The objectives of this paper are to compare the three algorithms in terms of numerical accuracy and efficiency and to demonstrate the ability of PDF methods to calculate this type of flow accurately. While one of the three algorithms is a stand-alone particle-mesh method, the other two are consistent hybrid algorithms, i.e., both are particle methods coupled with finite volume schemes. The motivation for hybrid algorithms is to reduce the statistical and bias errors. Since the coupling between the finite volume scheme and the particle method is a major numerical issue, different approaches have been investigated. It is shown that the results obtained from the three numerical algorithms are in good agreement with each other and with the experimental data.

MSC:

76M35 Stochastic analysis applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
76F55 Statistical turbulence modeling
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Anand, M. S.; Hsu, A. T.; Pope, S. B., Calculations of swirl combustors using joint velocity-scalar probability density function method, AIAA J, 35, 1143 (1997)
[2] Anand, M. S.; Pope, S. B.; Mongia, H. C., A PDF method for turbulent recirculating flows, Lecture Notes in Engineering, 672-693 (1989)
[3] Caughey, D. A., Diagonal implicit multigrid algorithm for the Euler equations, AIAA J, 26, 841 (1988) · Zbl 0667.76108
[4] Chang, G.-C., A Monte Carlo PDF/Finite-Volume Study of Turbulent Flames (1996)
[5] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys, 2, 12 (1967) · Zbl 0149.44802
[6] Correa, S. M.; Pope, S. B., Comparison of a Monte Carlo PDF finite-volume mean flow model with bluff-body Raman data, Twenty-Fourth Symposium (Int’l) on Combustion, 279-285 (1992)
[7] Correa, S. M.; Pope, S. B., Measurements and modeling of a bluff-body stabilized flame, Combust. Flame, 89, 195 (1992)
[8] Dally, B. B.; Fletcher, D. F.; Masri, A. R., Flow and mixing fields of turbulent bluff-body jets and flames, Combust. Theory Modelling, 2, 193 (1998) · Zbl 0963.76543
[9] Delarue, B. J.; Pope, S. B., Application of PDF methods to compressible turbulent flows, Phys. Fluids, 9, 2704 (1997) · Zbl 1185.76749
[10] Delarue, B. J.; Pope, S. B., Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods, Phys. Fluids, 10, 487 (1998) · Zbl 1185.76833
[11] C. Dopazo, Recent developments in pdf methods, in Turbulent Reacting Flows, edited by P. A. Libby and F. A. WilliamsAcademic Press, London, 1994, Chapter 7, pp. 375-474.; C. Dopazo, Recent developments in pdf methods, in Turbulent Reacting Flows, edited by P. A. Libby and F. A. WilliamsAcademic Press, London, 1994, Chapter 7, pp. 375-474. · Zbl 0856.76068
[12] T. D. Dreeben, and, S. B. Pope, Nonparametric estimation of mean fields with application to particle methods for turbulent flows, Unpublished, Technical Report FDA, 92, - 13, Cornell University, 1992.; T. D. Dreeben, and, S. B. Pope, Nonparametric estimation of mean fields with application to particle methods for turbulent flows, Unpublished, Technical Report FDA, 92, - 13, Cornell University, 1992.
[13] Dreeben, T. D.; Pope, S. B., PDF/Monte Carlo simulation of near-wall turbulent flows, J. Fluid Mech, 357, 141 (1998) · Zbl 0906.76073
[14] Haworth, D. C.; Pope, S. B., A generalized Langevin model for turbulent flows, Phys. Fluids, 29, 387 (1986) · Zbl 0631.76051
[15] Choi, Y. H.; Merkle, C. L., Application of preconditioning in viscous flow, J. Comput. Phys, 105, 207 (1993) · Zbl 0768.76032
[16] Hockney, R. W.; Eastwood, J. W., Computer Simulations using Particles (1988) · Zbl 0662.76002
[17] Jayesh, and, S. B. Pope, Stochastic model for turbulent frequency, Unpublished, Technical Report FDA, 95, - 05, Cornell University, 1995.; Jayesh, and, S. B. Pope, Stochastic model for turbulent frequency, Unpublished, Technical Report FDA, 95, - 05, Cornell University, 1995.
[18] Jenny, P.; Müller, B., Convergence acceleration for computing steady state compressible flow at low Mach numbers, Combust. Flame, 28, 951 (1999) · Zbl 0961.76051
[19] P. Jenny, S. B. Pope, M. Muradoglu, and, D. A. Caughey, A hybrid algorithm for the joint pdf equation of turbulent reactive flows, J. Comput. Phys, in press.; P. Jenny, S. B. Pope, M. Muradoglu, and, D. A. Caughey, A hybrid algorithm for the joint pdf equation of turbulent reactive flows, J. Comput. Phys, in press. · Zbl 1030.76046
[20] W. P. Jones, Turbulence modelling and numerical solution methods for variable density and combusting flows, in, Turbulent Reacting Flows, edited by, P. A. Libby and F. A. Williams, Academic Press, London, 1994, p, 309.; W. P. Jones, Turbulence modelling and numerical solution methods for variable density and combusting flows, in, Turbulent Reacting Flows, edited by, P. A. Libby and F. A. Williams, Academic Press, London, 1994, p, 309. · Zbl 0856.76028
[21] Kalos, M. H.; Whitlock, P. A., Monte Carlo Methods (1986) · Zbl 0655.65004
[22] B. E. Launder, Phenomenological modelling: Present.and future?, in, Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in Physics, edited by, J. L. Lumley, Springer-verlag, Berlin, 1990, Vol, 357.; B. E. Launder, Phenomenological modelling: Present.and future?, in, Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in Physics, edited by, J. L. Lumley, Springer-verlag, Berlin, 1990, Vol, 357.
[23] Launder, B. E.; Spalding, D. B., Mathematical Models of Turbulence (1972) · Zbl 0288.76027
[24] A. R. Masri, Technical Report (The University of Sydney), available at, http://www.mech.eng.usyd.edu.au/research/energy/; A. R. Masri, Technical Report (The University of Sydney), available at, http://www.mech.eng.usyd.edu.au/research/energy/
[25] Masri, A. R.; Dibble, R. W.; Barlow, R. S., The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements, Prog. Energy Combust. Sci, 22, 307 (1996)
[26] Masri, A. R.; Pope, S. B., PDF calculations of piloted turbulent non-premixed flames of methane, Combust. Flame, 81, 13 (1990)
[27] Minier, J.-P.; Pozorski, J., Analysis of a PDF model in a mixing layer case, Proceedings of Tenth Symposium on Turbulent Shear Flows, 26.25-26.30 (1995)
[28] Muradoglu, M.; Caughey, D. A., Implicit multigrid solution of the preconditioned multi-dimensional Euler equations, AIAA J, 98-0114 (1998)
[29] Muradoglu, M.; Jenny, P.; Pope, S. B.; Caughey, D. A., A consistent hybrid finite-volume/particle method for the pdf equations of turbulent reactive flows, J. Comput. Phys, 154, 342 (1999) · Zbl 0953.76062
[30] Nooren, P. A.; Wouters, H. A.; Peeters, T. W.J.; Roekaerts, D.; Maas, U.; Schmidt, D., Monte Carlo PDF simulation of a turbulent natural-gas diffusion flame, Twenty-Sixth Symposium (Int’l) on Combustion (1996) · Zbl 1034.80504
[31] Pope, S. B., A Monte Carlo method for the PDF equations of turbulent reactive flow, Combust. Sci. Technol, 25, 159 (1981)
[32] Pope, S. B., PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci, 11, 119 (1985)
[33] Pope, S. B., Computations of turbulent combustion: progress and challenges, Twenty-Third Symposium (Int’l) on Combustion, 591-612 (1990)
[34] Pope, S. B., Lagrangian PDF methods for turbulent flows, Ann. Rev. Fluid. Mech, 26, 23 (1994) · Zbl 0802.76033
[35] Pope, S. B., On the relationship between stochastic Lagrangian models of turbulence and second-moment closures, Phys. Fluids, 6, 973 (1994) · Zbl 0827.76036
[36] S. B. Pope, PDF2DV: A Fortran code to solve the modelled joint PDF equations for two-dimensional recirculating flows. Unpublished Cornell University, 1994.; S. B. Pope, PDF2DV: A Fortran code to solve the modelled joint PDF equations for two-dimensional recirculating flows. Unpublished Cornell University, 1994.
[37] Pope, S. B., Particle method for turbulent flows: Integration of stochastic model equations, J. Comput. Phys, 117, 332 (1995) · Zbl 0827.76063
[38] Pope, S. B., Turbulent Flows (2000) · Zbl 0966.76002
[39] Pope, S. B.; Chen, Y. L., The velocity-dissipation probability density function model for turbulent flows, Phys. Fluids A, 2, 1437 (1990) · Zbl 0709.76060
[40] Roquemore, W. M.; Britton, R. L.; Sandhu, S. S., Investigation of the dynamic behaviour of a bluff-body diffusion flame using flame emission, AIAA J, 0178 (1982)
[41] V. Saxena and S. B. Pope, PDF calculations of major and minor species in a turbulent piloted jet flameCombustion Institute, Pittsburgh, PA, 1998, pp. 1081-1086.; V. Saxena and S. B. Pope, PDF calculations of major and minor species in a turbulent piloted jet flameCombustion Institute, Pittsburgh, PA, 1998, pp. 1081-1086.
[42] Turkel, E., Preconditioned methods for solving incompressible and low speed compressible flows, J. Comput. Phys, 72, 277 (1987) · Zbl 0633.76069
[43] Turkel, E., A review of preconditioning methods for fluid dynamics, Appl. Numer. Math, 12, 257 (1993) · Zbl 0770.76048
[44] Van Slooten, P. R.; Jayesh; Pope, S. B., Advances in PDF modeling for inhomogeneous turbulent flows, Phys. Fluids, 10, 246 (1998) · Zbl 1185.76686
[45] Van Slooten, P. R.; Pope, S. B., PDF modeling of inhomogeneous turbulence with exact representation of rapid distortions, Phys. Fluids, 9, 1085 (1997) · Zbl 1185.76786
[46] Van Slooten, P. R.; Pope, S. B., Application of PDF modeling to swirling and non-swirling turbulent jets, Flow, Turbulence and Combust, 62, 295 (1999) · Zbl 0959.76034
[47] Wilcox, D. C., Turbulence Modeling for CFD (1993)
[48] Xu, J.; Pope, S. B., Assessment of numerical accuracy of PDF/Monte Carlo methods for turbulent reactive flows, J. Comput. Phys, 152, 192 (1999) · Zbl 0945.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.