×

zbMATH — the first resource for mathematics

Gaussian approximation to a bivariate quadratic form distribution. (English) Zbl 0422.62045

MSC:
62H10 Multivariate distribution of statistics
62E15 Exact distribution theory in statistics
62E20 Asymptotic distribution theory in statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chaubey Y. P., Proc. of Amer. Stat. Assoc, Bus Econ (1978)
[2] Dasgupta P, Sankhya 30 pp 83– (1968)
[3] Imhof P.J, Biometrika 48 pp 841– (1961) · Zbl 0136.41103 · doi:10.1093/biomet/48.3-4.419
[4] DOI: 10.1137/0117072 · Zbl 0181.46102 · doi:10.1137/0117072
[5] Jensen D.R, Sankhya Ser-A 32 pp 193– (1970)
[6] DOI: 10.1111/j.1467-842X.1970.tb00108.x · Zbl 0198.23102 · doi:10.1111/j.1467-842X.1970.tb00108.x
[7] DOI: 10.1080/00949657608810129 · Zbl 0344.62020 · doi:10.1080/00949657608810129
[8] DOI: 10.2307/2284657 · Zbl 0254.62013 · doi:10.2307/2284657
[9] Johnson N.L, Distributions in Statistics:Continuous Distributions -2 (1970)
[10] Koerts J, On the Theory and Application of the General LinearModel (1969)
[11] DOI: 10.1137/1009111 · Zbl 0158.37901 · doi:10.1137/1009111
[12] DOI: 10.1080/03610927608827382 · Zbl 0341.62040 · doi:10.1080/03610927608827382
[13] Pan Jie-jian, Shuxue Jinjham 7 pp 328– (1964)
[14] Sankaran M.S, Biometrika 46 pp 235– (1959) · Zbl 0085.13716 · doi:10.1093/biomet/46.1-2.235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.