×

Fixing multiple eigenvalues by a minimal perturbation. (English) Zbl 1188.65050

The author studies the smallest perturbation \(\Delta M\) in the spectral norm, such that \(M - \Delta M\) has a set of fixed eigenvalues, where \(M\) is a given \(n \times n\) matrix. He provides a geometric basis for the success of the currently known 2-norm eigenvalue perturbation results as well as a conjectured generalization of those results.

MSC:

65F18 Numerical solutions to inverse eigenvalue problems
15A18 Eigenvalues, singular values, and eigenvectors

Software:

PHCpack; JDQZ; JDQR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bunse-Gerstner, A.; Byers, R.; Mehrmann, V.; Nichols, N. K., Numerical computation of an analytic singular value decomposition of a matrix valued function, Numer. Math., 60, 1-40 (1991) · Zbl 0743.65035
[2] Chu, M. T., Inverse eigenvalue problems, SIAM Rev., 40, 1, 1-39 (1998) · Zbl 0915.15008
[3] Clarke, F. H., Generalized gradients and applications, Trans. Amer. Math. Soc., 205, 247-262 (1975) · Zbl 0307.26012
[4] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms (1997), Springer
[5] de Sá, E. M.; Queiró, J. F., Singular values and invariant factors of matrix sums and products, Linear Algebra Appl., 225, 43-56 (1995) · Zbl 0834.15011
[6] Demmel, J.; Kågström, B., The generalized Schur decomposition of an arbitrary pencil \(A - \lambda B\): robust software with error bounds and applications. Part I: Theory and algorithms, ACM Trans. Math. Software, 19, 2, 160-174 (1993) · Zbl 0889.65042
[7] Demmel, J. W.; Edelman, A., The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms, Linear Algebra Appl., 230, 61-87 (1995) · Zbl 0842.15011
[8] Eckart, C.; Young, G., A principal axis transformation for non-Hermitian matrices, Bull. Amer. Math. Soc., 45, 118-121 (1939) · JFM 65.0041.05
[9] Edelman, A.; Elmroth, E.; Kågström, B., A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm, SIAM J. Matrix Anal. Appl., 20, 3, 667-699 (1999) · Zbl 0940.65040
[10] Golub, G. H.; Loan, C. F.V., Matrix Computations (1989), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, Maryland · Zbl 0733.65016
[11] Gracia, J. M., Nearest matrix with two prescribed eigenvalues, Linear Algebra Appl., 401, 277-294 (2005) · Zbl 1074.15011
[12] Horn, R. A.; Johnson, C. R., Matrix Analysis (1986), Cambridge University Press: Cambridge University Press New York, NY, USA
[13] Ikramov, K. D.; Nazari, A. M., Normal matrices and an extension of Malyshev’s formula, Math. Notes, 75, 608-616 (2004) · Zbl 1059.15027
[14] Lewis, A. S.; Sendov, H. S., Nonsmooth analysis of singular values. Part I: Theory, Set-Valued Anal., 13, 3, 213-241 (2005) · Zbl 1129.49025
[15] Lewis, A. S.; Sendov, H. S., Nonsmooth analysis of singular values. Part II: Applications, Set-Valued Anal., 13, 3, 243-264 (2005) · Zbl 1129.49026
[16] Lippert, R. A.; Edelman, A., The computation and sensitivity of double eigenvalues, (Chen, Z.; Li, Y.; Micchelli, C. A.; Xu, Y., Advances in Computational Mathematics. Advances in Computational Mathematics, Lecture Notes in Pure and Applied Mathematics, vol. 202 (1998), Marcel Dekker), 353-393 · Zbl 0932.65055
[17] Lippert, R. A., Fixing two eigenvalues by a minimal perturbation, Linear Algebra Appl., 406C, 177-200 (2005) · Zbl 1089.15017
[18] Lippert, R. A.; Edelman, A., Nonlinear eigenvalue problems with orthogonality constraints, (Bai, E. A.Z., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (2000), SIAM), 290-314
[19] Loewner, K., Über monotone Matrixfunktionen, Math. Z., 38, 177-216 (1934) · JFM 60.0055.01
[20] Malyshev, A.-N., A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues, Numer. Math., 83, 3, 443-454 (1999) · Zbl 0972.15011
[21] Mirsky, L., Symmetric gauge functions and unitarily invariant norms, Quart. J. Math, 11, 50-59 (1960) · Zbl 0105.01101
[22] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 0229.90020
[23] Rockafellar, R. T., The Theory of Subgradients and its Applications to Problems of Optimization and Nonconvex Functions (1981), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0462.90052
[24] Schmidt, E., Zur Theorie der linearen und nichtlinearen Integralgleichungen. 1. Teil: Entwicklung willknrlicher Funktionen nach Systemen vorgeschriebener (on the theory of linear and nonlinear integral equations. Part i, Expansion of arbitrary functions by a prescribed system), Math. Ann., 63, 433-476 (1907) · JFM 38.0377.02
[25] Shapiro, H., The Weyr characteristic, Amer. Math. Monthly, 106, 10, 919-929 (1999) · Zbl 0981.15008
[26] Stewart, G.; Sun, J., Matrix Perturbation Theory (1990), Academy Press, Inc.: Academy Press, Inc. San Diego, California
[27] Strang, G.; Nguyen, T., The interplay of ranks of submatrices, SIAM Rev., 46, 4, 637-646 (2004) · Zbl 1063.15002
[28] Verschelde, J., Algorithm 795: PHCPACK: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software, 25, 2, 251-276 (1999) · Zbl 0961.65047
[29] Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71, 441-479 (1912) · JFM 43.0436.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.