×

Block length selection in the bootstrap for time series. (English) Zbl 1061.62528

Summary: The blockwise bootstrap is a modification of Efron’s bootstrap designed to give correct results for dependent stationary observations. One drawback of the method is that it depends critically on a block length which has to be chosen by the user. Here we propose a fully data-driven method to select this block length. It is based on the equivalence of the blockwise bootstrap variance to a lag weight estimator of a spectral density at the origin. The relevant spectral density is the one of the process given by the influence function of the statistic to be bootstrapped. In this equivalence the block length is the inverse of the bandwidth. We thus apply a recently developed local bandwidth selection procedure to the time series given by the estimated influence function. Simulations show that this procedure gives good results in a wide range of situations.

MSC:

62G09 Nonparametric statistical resampling methods
62M15 Inference from stochastic processes and spectral analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

Software:

bootstrap
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brockmann, M.; Gasser, Th; Herrmann, E.: Locally adaptive bandwidth choice for kernel regression estimators. J. amer. Statist. assoc. 88, 1302-1309 (1993) · Zbl 0792.62028
[2] Bühlmann, P.: Blockwise bootstrapped empirical process for stationary sequences. Ann. statist. 22, 995-1012 (1994) · Zbl 0806.62032
[3] Bühlmann, P.: The blockwise bootstrap for general empirical processes of stationary sequences. Stochast. process. Appl. 58, 247-265 (1995) · Zbl 0841.62036
[4] Bühlmann, P.: Locally adaptive lag-window spectral estimation. J. time ser. Anal. 17, 247-270 (1996) · Zbl 0854.62087
[5] Bühlmann, P.: Sieve bootstrap for time series. Bernoulli 3, 123-148 (1997) · Zbl 0874.62102
[6] Bühlmann, P.; Künsch, H. R.: The blockwise bootstrap for general parameters of a stationary time series. Scand. J. Statist. 22, 35-54 (1995) · Zbl 0820.62078
[7] Carlstein, E.; Do, K. -A; Hall, P.; Hesterberg, T.; Künsch, H. R.: Matched-block bootstrap for dependent data. Bernoulli 4, 305-328 (1998) · Zbl 0920.62106
[8] Doukhan, P., 1994. Mixing. Properties and Examples. Lecture Notes in Statistics, vol. 85. Springer, New York. · Zbl 0801.60027
[9] Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall, New York. · Zbl 0835.62038
[10] Freedman, D.: On bootstrapping two-stage least-squares estimates in stationary linear models. Ann. statist. 12, 827-842 (1984) · Zbl 0542.62051
[11] Geyer, C. J.: Practical Markov chain Monte Carlo. Statist. sci. 7, 473-483 (1992)
[12] Götze, F.; Künsch, H. R.: Second order correctness of the blockwise bootstrap for stationary observations. Ann. statist. 24, 1914-1933 (1996) · Zbl 0906.62040
[13] Hall, P.; Horowitz, J. L.; Jing, B. -Y: On blocking rules for the bootstrap with dependent data. Biometrika 82, 561-574 (1995) · Zbl 0830.62082
[14] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., 1986. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York. · Zbl 0593.62027
[15] Heidelberger, P.; Welch, P. D.: A spectral method for confidence interval generation and run length control in simulations. Commun. ACM 24, 233-245 (1981)
[16] Künsch, H. R.: The jackknife and the bootstrap for general stationary observations. Ann. statist. 17, 1217-1241 (1989) · Zbl 0684.62035
[17] Lahiri, S. N.: Second order optimality of stationary bootstrap. Statist. probab. Lett. 11, 335-341 (1991) · Zbl 0722.62016
[18] Liu, R.Y., Singh, K., 1992. Moving blocks jackknife and bootstrap capture weak dependence, in: Le Page, R., Billard, L. (Eds.), Exploring the Limits of the Bootstrap. Wiley, New York, pp. 225–248. · Zbl 0838.62036
[19] Naik-Nimbalkar, U. V.; Rajarshi, M. B.: Validity of blockwise bootstrap for empirical processes with stationary observations. Ann. statist. 22, 980-994 (1994) · Zbl 0808.62043
[20] Politis, D. N.; Romano, J. P.: A general resampling scheme for triangular arrays of \({\alpha}\)-mixing random variables. Ann. statist. 20, 1985-2007 (1992)
[21] Politis, D. N.; Romano, J. P.: Nonparametric resampling for homogeneous strong mixing random fields. J. multivariate anal. 47, 301-328 (1993) · Zbl 0795.62087
[22] Politis, D. N.; Romano, J. P.: The stationary bootstrap. J. amer. Stat. assoc. 89, 1303-1313 (1994) · Zbl 0814.62023
[23] Politis, D. N.; Romano, J. P.: Bias-corrected nonparametric spectral estimation. J. time ser. Anal. 16, 67-103 (1995) · Zbl 0811.62088
[24] Priestley, M.B., 1981. Spectral Analysis and Time Series, vol. 1. Academic Press, New York. · Zbl 0537.62075
[25] Radulović, D.: The bootstrap of the mean for strong mixing sequences under minimal conditions. Statist. probab. Lett. 28, 65-72 (1996) · Zbl 0881.62049
[26] Radulović, D.: The bootstrap for empirical processes based on stationary observations. Stochast. process. Appl. 65, 259-279 (1996) · Zbl 0885.62052
[27] Radulović, D., 1998. The bootstrap of empirical processes for {\(\alpha\)}-mixing sequences, in: Eberlein, E., Hahn, M., Talagrand, M. (Eds.), High Dimensional Probability. Progress in Probability, vol. 43. Birkhäuser, Basel, pp. 315–330. · Zbl 0901.62060
[28] von Storch, H., Navarra, A. (Eds.), 1995. Analysis of Climate Variability: Applications of Statistical Techniques. Springer, Berlin. · Zbl 0862.92021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.