×

A hierarchical multivariate spatio-temporal model for clustered climate data with annual cycles. (English) Zbl 1423.62159

Summary: We introduce a Bayesian multivariate hierarchical framework to estimate a space-time model for a joint series of monthly extreme temperatures and amounts of precipitation. Data are available for 360 monitoring stations over 60 years, with missing data affecting almost all series. Model components account for spatio-temporal correlation and annual cycles, dependence on covariates and between responses. Spatio-temporal dependence is modeled by the nearest neighbor Gaussian process (GP), response multivariate dependencies are represented by the linear model of coregionalization and effects of annual cycles are included by a circular representation of time. The proposed approach allows imputation of missing values and interpolation of climate surfaces at the national level. It also provides a characterization of the so called Italian ecoregions, namely broad and discrete ecologically homogeneous areas of similar potential as regards the climate, physiography, hydrography, vegetation and wildlife. To now, Italian ecoregions are hierarchically classified into 4 tiers that go from 2 divisions to 35 subsections and are defined by informed expert judgments. The current climatic characterization of Italian ecoregions is based on bioclimatic indices for the period 1955–2000.

MSC:

62P12 Applications of statistics to environmental and related topics
62H11 Directional data; spatial statistics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P10 Applications of statistics to biology and medical sciences; meta analysis
60G15 Gaussian processes
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Stat. Comput.18 343-373.
[2] Bai, Y., Song, P. X.-K. and Raghunathan, T. E. (2012). Joint composite estimating functions in spatiotemporal models. J. R. Stat. Soc. Ser. B. Stat. Methodol.74 799-824. · Zbl 1411.62271
[3] Bailey, R. G. (1983). Delineation of ecosystem regions. Environ. Manag.7 365-373.
[4] Bailey, R. G. (2004). Identifying ecoregion boundaries. Environ. Manag.34 S14-S26.
[5] Balint, P. J., Stewart, R. E., Desai, A. and Walters, L. C. (2011). Wicked Environmental Problems. Island Press, Washington, DC.
[6] Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2015). Hierarchical Modeling and Analysis for Spatial Data, 2nd ed. Monographs on Statistics and Applied Probability135. CRC Press, Boca Raton, FL. · Zbl 1358.62009
[7] Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol.70 825-848. · Zbl 05563371
[8] Bevilacqua, M., Gaetan, C., Mateu, J. and Porcu, E. (2012). Estimating space and space-time covariance functions for large data sets: A weighted composite likelihood approach. J. Amer. Statist. Assoc.107 268-280. · Zbl 1261.62088
[9] Bevilacqua, M., Fassò, A., Gaetan, C., Porcu, E. and Velandia, D. (2016a). Covariance tapering for multivariate Gaussian random fields estimation. Stat. Methods Appl.25 21-37. · Zbl 1416.62550
[10] Bevilacqua, M., Alegria, A., Velandia, D. and Porcu, E. (2016b). Composite likelihood inference for multivariate Gaussian random fields. J. Agric. Biol. Environ. Stat.21 448-469. · Zbl 1347.62237
[11] Blangiardo, M. and Cameletti, M. (2015). Spatial and Spatio-Temporal Bayesian Models with R-INLA. Wiley, Chichester. · Zbl 1318.62001
[12] Blasi, C., Capotorti, G., Copiz, R., Guida, D., Mollo, B., Smiraglia, D. and Zavattero, L. (2014). Classification and mapping of the ecoregions of Italy. Plant Biosyst.148 1255-1345.
[13] Chung, M., Binois, M., Gramacy, R. B., Moquin, D. J., Smith, A. P. and Smith, A. M. (2018). Parameter and uncertainty estimation for dynamical systems using surrogate stochastic processes. Preprint. Available at arXiv:1802.00852. · Zbl 1420.60047
[14] Daniels, M. J. and Kass, R. E. (1999). Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. J. Amer. Statist. Assoc.94 1254-1263. · Zbl 1069.62508
[15] Daniels, M. J. and Pourahmadi, M. (2009). Modeling covariance matrices via partial autocorrelations. J. Multivariate Anal.100 2352-2363. · Zbl 1175.62090
[16] Datta, A., Banerjee, S., Finley, A. O. and Gelfand, A. E. (2016a). Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. J. Amer. Statist. Assoc.111 800-812.
[17] Datta, A., Banerjee, S., Finley, A. O., Hamm, N. A. S. and Schaap, M. (2016b). Nonseparable dynamic nearest neighbor Gaussian process models for large spatio-temporal data with an application to particulate matter analysis. Ann. Appl. Stat.10 1286-1316. · Zbl 1391.62269
[18] Diggle, P. J. and Ribeiro, P. J. Jr. (2002). Bayesian inference in Gaussian model-based geostatistics. Geogr. Environ. Model.6 129-146.
[19] Eidsvik, J., Shaby, B. A., Reich, B. J., Wheeler, M. and Niemi, J. (2014). Estimation and prediction in spatial models with block composite likelihoods. J. Comput. Graph. Statist.23 295-315.
[20] Faye, E., Herrera, M., Bellomo, L., Silvain, J.-F. and Dangles, O. (2014). Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes. PLoS ONE9 e105541.
[21] Ferraro Petrillo, U. and Raimato, G. (2014). TeraStat Computer cluster for high performance computing, Dept. Statistical Science, Sapienza Univ. Rome. Available at http://www.dss.uniroma1.it/en/node/6554.
[22] Fick, S. E. and Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.. 37 4302-4315.
[23] Finley, A. O., Banerjee, S. and Gelfand, A. E. (2012). Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes. J. Geogr. Syst.14 29-47.
[24] Finley, A. O., Datta, A., Cook, B. C., Morton, D. C., Andersen, H. E. and Banerjee, S. (2017). Efficient algorithms for Bayesian nearest neighbor Gaussian processes. Preprint. Available at arXiv:1702.00434. · Zbl 07499062
[25] Gelfand, A. E., Schmidt, A. M., Banerjee, S. and Sirmans, C. F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. TEST13 263-312. · Zbl 1069.62074
[26] Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P., eds. (2010). Handbook of Spatial Statistics. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, FL. · Zbl 1188.62284
[27] Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. J. Amer. Statist. Assoc.97 590-600. · Zbl 1073.62593
[28] Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli19 1327-1349. · Zbl 1283.62200
[29] Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc.102 359-378. · Zbl 1284.62093
[30] Gräler, B., Pebesma, E. and Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. RFID J.8 204-218.
[31] Gramacy, R. B. and Apley, D. W. (2015). Local Gaussian process approximation for large computer experiments. J. Comput. Graph. Statist.24 561-578.
[32] Grimit, E. P., Gneiting, T., Berrocal, V. J. and Johnson, N. A. (2006). The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Q. J. R. Meteorol. Soc.132 2925-2942.
[33] Guinness, J. (2018). Permutation and grouping methods for sharpening Gaussian process approximations. Technometrics. To appear.
[34] Hannah, L., Roehrdanz, P. R., Ikegami, M., Shepard, A. V., Shaw, M. R., Tabor, G., Zhi, L., Marquet, P. A. and Hijmans, R. J. (2013). Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA110 6907-6912.
[35] Heaton, M. J., Datta, A., Finley, A., Furrer, R., Guhaniyogi, R., Gerber, F., Gramacy, R. B., Hammerling, D., Katzfuss, M., Lindgren, F., Nychka, D. W., Sun, F. and Zammit-Mangion, A. (2017). A case study competition among methods for analyzing large spatial data. Preprint. Available at arXiv:1710.05013. · Zbl 1426.62345
[36] Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25 1965-1978.
[37] Jona Lasinio, G., Mastrantonio, G. and Pollice, A. (2013). Discussing the “big \(n\) problem.” Stat. Methods Appl.22 97-112. · Zbl 1333.62222
[38] Katzfuss, M. and Guinness, J. (2017). A general framework for Vecchia approximations of Gaussian processes. Preprint. Available at arXiv:1708.06302. · Zbl 07368223
[39] Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A. and Cheng, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens.115 119-133.
[40] Loveland, T. R. and Merchant, J. M. (2004). Ecoregions and ecoregionalization: Geographical and ecological perspectives. Environ. Manag.34 S1.
[41] Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A. and Zomer, R. (2013). A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr.22 630-638.
[42] Mücher, C. A., Klijn, J. A., Wascher, D. M. and Schaminée, J. H. J. (2010). A new European landscape classification (LANMAP): A transparent, flexible and user-oriented methodology to distinguish landscapes. Ecol. Indicators10 87-103.
[43] Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Comput. Geosci.30 683-691.
[44] Pesaresi, S., Galdenzi, D., Biondi, E. and Casavecchia, S. (2014). Bioclimate of Italy: Application of the worldwide bioclimatic classification system. J. Maps10 538-553.
[45] Shirota, S. and Gelfand, A. E. (2017). Space and circular time log Gaussian Cox processes with application to crime event data. Ann. Appl. Stat.11 481-503. · Zbl 1416.62689
[46] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol.64 583-639. · Zbl 1067.62010
[47] WMO (2016). Guidelines on Best Practices for Climate Data Rescue. WMO—Guidelines1182. World Meteorological Organization, Geneva.
[48] Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, 2nd ed. Texts in Statistical Science Series. CRC Press/CRC, Boca Raton, FL. · Zbl 1368.62004
[49] Xu, G., Liang, F. and Genton, M. G. (2015). A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets. Statist. Sinica25 61-79. · Zbl 1480.86011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.