×

Face recognition via deep stacked denoising sparse autoencoders (DSDSA). (English) Zbl 1428.94024

Summary: Face recognition is still a hot topic under investigation due to many challenges of variation including the difference in poses, illumination, expression, occlusion and scenes. Recently, deep learning methods achieved remarkable results in image representation and recognition fields. Such methods extract salient features automatically from images to reduce the dimension and obtain more useful representation of raw data. In this paper, the proposed face recognition system namely Deep Stacked Denoising Sparse Autoencoders (DSDSA) combines the deep neural network technology, sparse autoencoders and denoising task. Autoencoder is used to construct a neural network that learns an approximation of an identity function by placing constraints to learn fine representations of the inputs. Autoencoders have unique capabilities in dealing with interpretation of the input data; in this way produce more meaningful results. They are successfully applied to many object recognition fields. For the classification task, two classifiers were used, namely multi-class SVM and Softmax classifier. Experimental results on known face databases including ORL, Yale, Caltech and a subset of PubFig show that the proposed system yields promising performance and achieves comparable accuracy.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jain, A. K.; Li, S. Z., Handbook of Face Recognition (2011), Springer: Springer New York · Zbl 1230.68002
[2] Liao, S.; Jain, A. K.; Li, S. Z., A fast and accurate unconstrained face detector, IEEE Trans. Pattern Anal. Mach. Intell., 38, 2, 211-223 (2016)
[3] Belhumeur, P. N.; Hespanha, J. P.; Kriegman, D. J., Eigenfaces vs. fisherfaces: recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell., 19, 7, 711-720 (1997)
[4] Turk, M. A.; Pentland, A. P., Face recognition using eigenfaces, (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR’91 (1991)), 586-591
[5] Roweis, S. T.; Saul, L. K., Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 5500, 2323-2326 (2000)
[6] Schölkopf, B.; Smola, A.; Müller, K. R., Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 5, 1299-1319 (1998)
[7] Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K. R., Fisher discriminant analysis with kernels, (Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE Signal Processing Society Workshop (1999)), 41-48
[8] Ahonen, T.; Hadid, A.; Pietikainen, M., Face description with local binary patterns application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28, 12, 2037-2041 (2006)
[9] Boukabou, W. R.; Ghouti, L.; Bouridane, A., Face recognition using a Gabor filter bank approach, (First NASA/ESA Conference on Adaptive Hardware and Systems (2006), IEEE), 465-468
[10] Déniz, O.; Bueno, G.; Salido, J.; De la Torre, F., Face recognition using histograms of oriented gradients, Pattern Recognit. Lett., 32, 1598-1603 (2011)
[11] Biswas, S.; Sil, J., An efficient face recognition method using contourlet and curvelet transform, J.King Saud Univ. Comput. Inf. Sci. (2017)
[12] Vapnik, V., Statistical Learning Theory (1998), Wiley: Wiley New York · Zbl 0935.62007
[13] Ren, D.; Hui, M.; Hu, N.; Zhan, T., A weighted sparse neighbor representation based on Gaussian kernel function to face recognition, Optik, 167, 7-14 (2018)
[14] Ho, J.; Yang, M. H.; Lim, J.; Lee, K. C.; Kriegman, D., Clustering appearances of objects under varying illumination conditions, (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)), 1-11
[15] Guillaumin, M.; Verbeek, J.; Schmid, C., Is that you? Metric learning approaches for face identification, (Proceedings of the IEEE Twelfth International Conference on Computer Vision (2009, September)), 498-505
[16] C. Huang, S. Zhu, K. Yu, 2012, Large scale strongly supervised ensemble metric learning with applications to face verification and retrieval. arXiv:1212.6094; C. Huang, S. Zhu, K. Yu, 2012, Large scale strongly supervised ensemble metric learning with applications to face verification and retrieval. arXiv:1212.6094
[17] Cinbis, R. G.; Verbeek, J.; Schmid, C., Unsupervised metric learning for face identification in TV video, (Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV) (2011)), 1559-1566
[18] Wright, J.; Yang, A. Y.; Ganesh, A.; Sastry, S. S.; Ma, Y., Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2, 210-227 (2009)
[19] Zhang, L.; Yang, M.; Feng, X., Sparse representation or collaborative representation: which helps face recognition?, (Proceedings of the IEEE in Computer vision (ICCV) (2011)), 471-478
[20] Gao, S.; Zhang, Y.; Jia, K.; Lu, J.; Zhang, Y., Single sample face recognition via learning deep supervised autoencoders, IEEE Trans. Inf. Forensics and Secur., 10, 10, 2108-2118 (2015)
[21] Yang, M.; Zhang, L., Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary, (Proceedings of the European Conference on Computer Vision. Proceedings of the European Conference on Computer Vision, Berlin, Heidelberg (2010), Springer), 448-461
[22] Lu, C. Y.; Min, H.; Gui, J.; Zhu, L.; Lei, Y. K., Face recognition via weighted sparse representation, J. Vis. Commun. Image Represent., 24, 2, 111-116 (2013)
[23] Min, R.; Dugelay, J. L., Improved combination of LBP and sparse representation based classification (SRC) for face recognition, (Proceedings of the IEEE International Conference on Multimedia and Expo (ICME) (2011)), 1-6
[24] Yin, J.; Liu, Z.; Jin, Z.; Yang, W., Kernel sparse representation based classification, Neurocomputing, 77, 1, 120-128 (2012)
[25] Huang, G. B.; Lee, H.; Learned-Miller, E., Learning hierarchical representations for face verification with convolutional deep belief networks, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (2012)), 2518-2525
[26] Taigman, Y.; Yang, M.; Ranzato, M. A.; Wolf, L., Deepface: closing the gap to human-level performance in face verification, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)), 1701-1708
[27] Sun, Y.; Wang, X.; Tang, X., Hybrid deep learning for face verification, (Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2013)), 1489-1496
[28] Sun, Y.; Wang, X.; Tang, X., Deep learning face representation from predicting 10,000 classes, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)), 1891-1898
[29] Zeng, N.; Wang, Z.; Zhang, H.; Liu, W.; Alsaadi, F. E., Deep belief networks for quantitative analysis of a gold immunochromatographic strip, Cogn. Comput., 8, 4, 684-692 (2016)
[30] Y. Sun, X. Wang, X. Tang, 2015, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2892-2900.; Y. Sun, X. Wang, X. Tang, 2015, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2892-2900.
[31] Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F. E., A survey of deep neural network architectures and their applications, Neurocomputing, 234, 11-26 (2017)
[32] Y. Sun, D. Liang, X. Wang, X. Tang, 2015, Deepid3: face recognition with very deep neural networks. arXiv:1502.00873; Y. Sun, D. Liang, X. Wang, X. Tang, 2015, Deepid3: face recognition with very deep neural networks. arXiv:1502.00873
[33] Chopra, S.; Hadsell, R.; LeCun, Y., Learning a similarity metric discriminatively, with application to face verification, (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’ 05), 1 (2005)), 539-546
[34] Z. Zhu, P. Luo, X. Wang, X. Tang, 2014, Recover canonical-view faces in the wild with deep neural networks. arXiv:1404.3543; Z. Zhu, P. Luo, X. Wang, X. Tang, 2014, Recover canonical-view faces in the wild with deep neural networks. arXiv:1404.3543
[35] Schroff, F.; Kalenichenko, D.; Philbin, J., Facenet: a unified embedding for face recognition and clustering, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)), 815-823
[36] Parkhi, O. M.; Vedaldi, A.; Zisserman, A., Deep face recognition, (Proceedings of the BMVC (2015, September)), 6
[37] Zhang, Z.; Li, J.; Zhu, R., Deep neural network for face recognition based on sparse autoencoder, (Proceedings of the Eighth International Congress on Image and Signal Processing (CISP) (2015)), 594-598
[38] Biswas, S.; Sil, J.; Maity, S. P., On prediction error compressive sensing image reconstruction for face recognition, Comput. Electr. Eng. (2017)
[39] Chen, Y.; Huang, T.; Liu, H.; Zhana, D., Multi-pose face ensemble classification aided by Gabor features and deep belief nets, Optik - Int. J. Light Electron Opt., 127, 2, 946-954 (2016)
[40] Jain, N.; Shishir, K.; Kumar, A.; Shamsolmoali, P.; Zareapoor, M., Hybrid deep neural networks for face emotion recognition, Pattern Recognit. Lett. (2018)
[41] Vinay, A.; Gupta, A.; Bharadwaj, A.; Srinivasan, A.; Murthy, K. N.B.; Natarajan, S., Deep learning on binary patterns for face recognition, Proc. Comput. Sci., 132, 76-83 (2018)
[42] Luo, X.; Shen, R.; Hu, J.; Deng, J.; Hu, L.; Guan, Q., A Deep convolution neural network model for vehicle recognition and face recognition, Proc. Comput. Sci., 107, 715-720 (2017)
[43] Hinton, G. E.; Salakhutdinov, R. R., Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006) · Zbl 1226.68083
[44] Kan, M.; Shan, S.; Chang, H.; Chen, X., Stacked progressive auto-encoders for face recognition across poses, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)), 1883-1890
[45] Zhang, J.; Shan, S.; Kan, M.; Chen, X., Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment, (Proceedings of the European Conference on Computer Vision. Proceedings of the European Conference on Computer Vision, Cham (2014), Springer), 1-16
[46] Gao, S.; Tsang, I. W.H.; Chia, L. T., Kernel sparse representation for image classification and face recognition, (Proceedings of the European Conference on Computer Vision. Proceedings of the European Conference on Computer Vision, Berlin (2010)), 1-14
[47] Ding, C.; Tao, D., Robust face recognition via multimodal deep face representation, IEEE Trans. Multimed., 17, 11, 2049-2058 (2015)
[48] Li, F.; Gao, X.; Wang, L., Face recognition based on deep autoencoder networks with dropout, Adv. Intell. Syst. Res., 132, 243-246 (2017)
[49] Zeng, N.; Zhang, H.; Song, B.; Liu, W.; Li, Y.; Dobaie, A. M., Facial expression recognition via learning deep sparse autoencoders, Neurocomputing, 273, 643-649 (2018)
[50] Bengio, Y., Learning deep architectures for AI, Found. Trends® Mach. Learn., 2, 1, 1-127 (2009) · Zbl 1192.68503
[51] Gravelines, C., Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity, (Proceedings of the Electronic Thesis and Dissertation Repository (2014))
[52] Viola, P.; Jones, M. J., Robust real-time face detection, Int. J. Comput. Vis., 57, 2, 137-154 (2004)
[53] Yu, X.; Huang, J.; Zhang, S.; Yan, W.; Metaxas, D. N., Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model, (Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV) (2013)), 1944-1951
[54] Baltrusaitis, T.; Robinson, P.; Morency, L. P., Constrained local neural fields for robust facial landmark detection in the wild, (Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops (ICCVW). Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), Sydney (2013)), 354-361
[55] Hinton, G. E.; Osindero, S.; Teh, Y. W., A fast learning algorithm for deep belief nets, Neural Comput., 18, 7, 1527-1554 (2006) · Zbl 1106.68094
[56] Kumar, N.; Berg, C. A.; Belhumeur, P. N.; Nayar, S. K., Attribute and simile classifiers for face verification, (Proceedings of the International Conference on Computer Vision (ICCV) (2009))
[57] He, X.; Yan, S.; Hu, Y.; Niyogi, P.; Zhang, H. J., Face recognition using laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell., 27, 3, 328-340 (2005)
[58] Sudha, N.; Mohan, A. R.; Meher, P. K., A self-configurable systolic architecture for face recognition system based on principal component neural network, IEEE Trans. Circuits Syst. Video Technol., 21, 8, 1071-1084 (2011)
[59] T. Sim, R. Sukthankar, M. Mullin, S. Baluja, 1970, High-Performance Memory-based Face Recognition for Visitor Identification.; T. Sim, R. Sukthankar, M. Mullin, S. Baluja, 1970, High-Performance Memory-based Face Recognition for Visitor Identification.
[60] Ortiz, E. G.; Wright, A.; Shah, M., , Face recognition in movie trailers via mean sequence sparse representation-based classification, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2013)), 3531-3538
[61] Huang, G. B.; Ramesh, M.; Berg, T.; Learned-miller, E., Labeled faces in the wild: a database for studying face recognition in unconstrained environments, (Proceedings of the ECCV Workshop on Faces in Real-life Images, 2008 (2008))
[62] Lyons, M. J.; Budynek, J.; Akamatsu, S., Automatic classification of single facial images, IEEE Trans. Pattern Anal. Mach. Intell., 21, 12, 1357-1362 (1999)
[63] Ebner, N. C.; Riediger, M.; Lindenberger, U., FACES—A database of facial expressions in young, middle-aged, and older women and men: development and validation, Behav. Res. Methods, 42, 1, 351-362 (2010)
[64] Beveridge, J. R.; Bolme, D.; Draper, B. A.; Teixeira, M., The CSU face identification evaluation system: its purpose features and structure, Mach. Vis. Appl., 16, 2, 128-138 (2005)
[65] Koestinger, M.; Wohlhart, P.; Roth, P. M.; Bischof, H., Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization, (Proceedings of the IEEE International Workshop on Benchmarking Facial Image Analysis Technologies (2011)), 2144-2151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.