×

Multicomplex solitons. (English) Zbl 1436.35065

Summary: We discuss integrable extensions of real nonlinear wave equations with multi-soliton solutions, to their bicomplex, quaternionic, coquaternionic and octonionic versions. In particular, we investigate these variants for the local and nonlocal Korteweg-de Vries equation and elaborate on how multi-soliton solutions with various types of novel qualitative behaviour can be constructed. Corresponding to the different multicomplex units in these extensions, real, hyperbolic or imaginary, the wave equations and their solutions exhibit multiple versions of antilinear or \(\mathcal{PT}\)-symmetries. Utilizing these symmetries forces certain components of the conserved quantities to vanish, so that one may enforce them to be real. We find that symmetrizing the noncommutative equations is equivalent to imposing a \(\mathcal{PT}\)-symmetry for a newly defined imaginary unit from combinations of imaginary and hyperbolic units in the canonical representation.

MSC:

35C08 Soliton solutions
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
74J35 Solitary waves in solid mechanics

Software:

CLIFFORD
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett, 110, 5, 064105 (2013) · doi:10.1103/PhysRevLett.110.064105
[2] Adler, S. L., Quaternionic quantum mechanics and quantum fields, 88 · Zbl 0885.00019
[3] Bagchi, B.; Banerjee, A., Bicomplex hamiltonian systems in quantum mechanics, J. of Phys. A: Math. and Theor, 48, 29, 505201 (2015) · Zbl 1330.81074 · doi:10.1088/1751-8113/48/50/505201
[4] Banerjee, A., On the quantum mechanics of bicomplex Hamiltonian system, Ann. of Phys, 377, 493-505 (2017) · Zbl 1368.30022 · doi:10.1016/j.aop.2017.01.006
[5] Banerjee, A., Bicomplex Harmonic and Isotonic Oscillators: The Excited States, Advances in Applied Clifford Algebras, 27, 2321-2332 (2017) · Zbl 1380.30034 · doi:10.1007/s00006-017-0772-4
[6] Banerjee, A.; Biswas, A., Exact bound state solutions for the bicomplex Morse oscillator, 1975, 10, 030001 (2018)
[7] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rept, Prog. Phys, 70, 947-1018 (2007) · doi:10.1088/0034-4885/70/6/R03
[8] Bender, C. M.; Boettcher, S., Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry, Phys. Rev. Lett., 80, 5243-5246 (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[9] Brody, D. C.; Graefe, E.-M., On complexified mechanics and coquaternions, J. of Phys. A: Math. and Theor., 072001, 9 (2011) · Zbl 1208.81073
[10] Cen, J.; Correa, F.; Fring, A., Integrable nonlocal Hirota equations, J. Math. Phys, 60, 18, 081508 (2019) · Zbl 1428.35491 · doi:10.1063/1.5013154
[11] Cen, J.; Correa, F.; Fring, A., Degenerate multi-solitons in the sine-Gordon equation, J. Phys. A: Math. Theor, 50, 20, 435201 (2017) · Zbl 1386.35375 · doi:10.1088/1751-8121/aa8b7e
[12] Cen, J.; Correa, F.; Fring, A., Time-delay and reality conditions for complex solitons, J. of Math. Phys, 58, 14, 032901 (2017) · Zbl 1367.37054 · doi:10.1063/1.4978864
[13] Cen, J.; Fring, A., Complex solitons with real energies, J. Phys. A: Math. Theor, 49, 15, 365202 (2016) · Zbl 1351.37240 · doi:10.1088/1751-8113/49/36/365202
[14] Cen, J.; Fring, A., Asymptotic and scattering behaviour for degenerate multi-solitons in the Hirota equation, Physica D: Nonlinear Phenomena, 397, 17-24 (2019) · doi:10.1016/j.physd.2019.05.005
[15] Correa, F.; Fring, A., Regularized degenerate multi-solitons, Journal of High Energy Physics, 2016, 15, 8 (2016) · Zbl 1390.81223 · doi:10.1007/JHEP09(2016)008
[16] Dast, D.; Haag, D.; Cartarius, H.; Main, J.; Wunner, G., Eigenvalue structure of a Bose-Einstein condensate in a-symmetric double well, J. of Phys. A: Math. and Theor, 46, 19, 375301 (2013) · Zbl 1275.81039 · doi:10.1088/1751-8113/46/37/375301
[17] Davenport, C. M., A commutative hypercomplex algebra with associated function theory, Clifford algebras with numeric and symbolic computations, 213-227 (1996) · Zbl 0890.30035 · doi:10.1007/978-1-4615-8157-4_14
[18] Dizdarevic, D.; Dast, D.; Haag, D.; Main, J.; Cartarius, H.; Wunner, G., Cusp bifurcation in the eigenvalue spectrum of PT-symmetric Bose-Einstein condensates, Phys. Rev. A, 91, 6, 033636 (2015) · doi:10.1103/PhysRevA.91.033636
[19] Finkelstein, D.; Jauch, J. M.; Schiminovich, S.; Speiser, D., Foundations of quaternion quantum mechanics, J. of Math. Phys, 3, 207-220 (1962) · doi:10.1063/1.1703794
[20] Girard, P. R., The quaternion group and modern physics, Euro. J. of Phys, 5, 25-32 (1984) · doi:10.1088/0143-0807/5/1/007
[21] Gutöhrlein, R.; Cartarius, H.; Main, J.; Wunner, G., Bifurcations and exceptional points in a-symmetric dipolar Bose-Einstein condensate, J. of Phys. A: Math. and Theor, 49, 18, 485301 (2016) · Zbl 1354.81021 · doi:10.1088/1751-8113/49/48/485301
[22] Günaydin, M.; Gürsey, F., Quark structure and octonions, J. of Math. Phys., 14, 1651-1667 (1973) · Zbl 0338.17004 · doi:10.1063/1.1666240
[23] Lou, S. Y. (2016)
[24] Lou, S. Y.; Huang, F., Alice-Bob physics: coherent solutions of nonlocal KdV systems, Scientific Reports, 11, 869 (2017) · doi:10.1038/s41598-017-00844-y
[25] Lou, S. Y., Alice-Bob systems, P^-T^-Ĉ symmetry invariant and symmetry breaking soliton solutions, J. of Math. Phys, 59, 20, 083507 (2018) · Zbl 1395.35169 · doi:10.1063/1.5051989
[26] Luna-Elizarraras, M. E.; Shapiro, M.; Struppa, D. C.; Vajiac, A., Bicomplex numbers and their elemen- tary functions, Cubo (Temuco) A Mathematical Journal, 14, 61-80 (2012) · Zbl 1253.30070 · doi:10.4067/S0719-06462012000200004
[27] Manikandan, K.; Stalin, S.; Senthilvelan, M., Dynamical behaviour of solitons in a PT-invariant nonlocal nonlinear Schrödinger equation with distributed coefficients, The Europ. Phys. J. B, 91, 11, 291 (2018) · Zbl 1515.35255 · doi:10.1140/epjb/e2018-90234-2
[28] Mostafazadeh, A., Pseudo-Hermitian Representation of Quantum Mechanics, Int. J. Geom. Meth. Mod. Phys, 7, 1191-1306 (2010) · Zbl 1208.81095 · doi:10.1142/S0219887810004816
[29] Price, G. B., An introduction to multicomplex spaces and functions (1991), M. Dekker inc: M. Dekker inc, New York · Zbl 0729.30040
[30] Rochon, D.; Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, Fasc. Math., 11, 28, 110 (2004) · Zbl 1114.11033
[31] Sangwine, S.; Ell, T.; Le Bihan, N., Fundamental representations and algebraic properties of biquaternions or complexified quaternions, Advances in Applied Clifford Algebras, 21, 607-636 (2011) · Zbl 1272.15016 · doi:10.1007/s00006-010-0263-3
[32] Scholtz, F. G.; Geyer, H. B.; Hahne, F., Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle, Ann. Phys, 213, 74-101 (1992) · Zbl 0749.47041 · doi:10.1016/0003-4916(92)90284-S
[33] Stalin, S.; Senthilvelan, M.; Lakshmanan, M., Nonstandard bilinearization of PT-invariant nonlocal nonlinear Schrödinger equation: Bright soliton solutions, Phys. Lett. A, 381, 2380-2385 (2017) · Zbl 1378.35074 · doi:10.1016/j.physleta.2017.05.026
[34] Sobczyk, G., The hyperbolic number plane, The College Math. J, 26, 268-280 (1995) · doi:10.1080/07468342.1995.11973712
[35] Theaker, K. A.; Van Gorder, R. A., Multicomplex wave functions for linear and nonlinear Schrödinger equations, Advances in Applied Clifford Algebras, 27, 1857-1879 (2017) · Zbl 1369.30065 · doi:10.1007/s00006-016-0734-2
[36] Ulrych, S., Relativistic quantum physics with hyperbolic numbers, Phys. Lett. B, 625, 313-323 (2005) · Zbl 1247.81188 · doi:10.1016/j.physletb.2005.08.072
[37] Vourdas, A., Quantum systems with finite Hilbert space: Galois fields in quantum mechanics, J. of Phys. A: Math. and Theor, 40, R285-R331 (2007) · Zbl 1176.81055 · doi:10.1088/1751-8113/40/33/R01
[38] Xuegang, Y., Hyperbolic Hilbert Space, Advances in Applied Clifford Algebras, 10, 12, 49 (2000) · Zbl 0988.46016 · doi:10.1007/BF03042009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.