Aslan, Halit Sevki; Reissig, Michael Semilinear effectively damped wave models with general relaxation function. (English) Zbl 07544212 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112959, 35 p. (2022). MSC: 35L15 35L71 35R09 35A01 PDF BibTeX XML Cite \textit{H. S. Aslan} and \textit{M. Reissig}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112959, 35 p. (2022; Zbl 07544212) Full Text: DOI OpenURL
Cheng, Minggang Global existence for systems of nonlinear wave and Klein-Gordon equations in two space dimensions under a kind of the weak null condition. (English) Zbl 07535493 J. Evol. Equ. 22, No. 2, Paper No. 49, 26 p. (2022). MSC: 35L52 35L71 PDF BibTeX XML Cite \textit{M. Cheng}, J. Evol. Equ. 22, No. 2, Paper No. 49, 26 p. (2022; Zbl 07535493) Full Text: DOI OpenURL
Shi, Jincheng; Zhang, Yan; Cai, Zihan; Liu, Yan Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: global existence versus blow-up. (English) Zbl 1485.35076 AIMS Math. 7, No. 1, 247-257 (2022). MSC: 35B44 35A01 35B40 35G25 PDF BibTeX XML Cite \textit{J. Shi} et al., AIMS Math. 7, No. 1, 247--257 (2022; Zbl 1485.35076) Full Text: DOI OpenURL
Duan, Xianglong Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. (English) Zbl 1483.35268 Kinet. Relat. Models 15, No. 1, 119-146 (2022). MSC: 35Q83 35M31 35B40 PDF BibTeX XML Cite \textit{X. Duan}, Kinet. Relat. Models 15, No. 1, 119--146 (2022; Zbl 1483.35268) Full Text: DOI OpenURL
Peng, Weimin; Zha, Dongbing Long time existence for two-dimension elastic waves. (English) Zbl 1484.35089 J. Differ. Equations 318, 384-413 (2022). MSC: 35B44 35L52 35L71 35Q74 PDF BibTeX XML Cite \textit{W. Peng} and \textit{D. Zha}, J. Differ. Equations 318, 384--413 (2022; Zbl 1484.35089) Full Text: DOI OpenURL
Yahagi, Yumi Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. (English) Zbl 1484.35006 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497-1510 (2022). MSC: 35A01 35A02 35B30 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Yahagi}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497--1510 (2022; Zbl 1484.35006) Full Text: DOI OpenURL
Yomgne, Gael Diebou On the generalized parabolic Hardy-Hénon equation: existence, blow-up, self-similarity and large-time asymptotic behavior. (English) Zbl 07478595 Differ. Integral Equ. 35, No. 1-2, 57-88 (2022). Reviewer: Svetlin Georgiev (Sofia) MSC: 35B35 35B44 35C06 35G25 PDF BibTeX XML Cite \textit{G. D. Yomgne}, Differ. Integral Equ. 35, No. 1--2, 57--88 (2022; Zbl 07478595) Full Text: arXiv OpenURL
Tohaneanu, Mihai Pointwise decay for semilinear wave equations on Kerr spacetimes. (English) Zbl 07464297 Lett. Math. Phys. 112, No. 1, Paper No. 6, 30 p. (2022). Reviewer: Ti-Jun Xiao (Fudan) MSC: 35B40 35L15 35L71 PDF BibTeX XML Cite \textit{M. Tohaneanu}, Lett. Math. Phys. 112, No. 1, Paper No. 6, 30 p. (2022; Zbl 07464297) Full Text: DOI arXiv OpenURL
D’Abbicco, M.; Ebert, M. R. The critical exponent for semilinear \(\sigma \)-evolution equations with a strong non-effective damping. (English) Zbl 1481.35040 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112637, 26 p. (2022). Reviewer: Michael Reissig (Freiberg) MSC: 35B33 35L15 35L71 35R11 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{M. R. Ebert}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112637, 26 p. (2022; Zbl 1481.35040) Full Text: DOI arXiv OpenURL
Kitamura, Shunsuke; Morisawa, Katsuaki; Takamura, Hiroyuki The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension. (English) Zbl 1479.35142 J. Differ. Equations 307, 486-516 (2022). MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{S. Kitamura} et al., J. Differ. Equations 307, 486--516 (2022; Zbl 1479.35142) Full Text: DOI arXiv OpenURL
Dao, Tuan Anh; Takeda, Hiroshi Global existence results for semi-linear structurally damped wave equations with nonlinear convection. (English) Zbl 1481.35051 J. Hyperbolic Differ. Equ. 18, No. 3, 729-760 (2021). MSC: 35B40 35B33 35L30 35L76 PDF BibTeX XML Cite \textit{T. A. Dao} and \textit{H. Takeda}, J. Hyperbolic Differ. Equ. 18, No. 3, 729--760 (2021; Zbl 1481.35051) Full Text: DOI arXiv OpenURL
Shen, Rong; Wang, Yong Optimal \(L^p\)-\(L^q\)-type decay rates of solutions to the three-dimensional nonisentropic compressible Euler equations with relaxation. (English) Zbl 1481.35069 Adv. Math. Phys. 2021, Article ID 8636092, 15 p. (2021). MSC: 35B40 35B45 35Q31 PDF BibTeX XML Cite \textit{R. Shen} and \textit{Y. Wang}, Adv. Math. Phys. 2021, Article ID 8636092, 15 p. (2021; Zbl 1481.35069) Full Text: DOI OpenURL
Xiao, Changwang; Guo, Fei On the global existence of small data classical solutions to a semilinear wave equation with a time-dependent damping. (English) Zbl 07441978 Math. Methods Appl. Sci. 44, No. 18, 14593-14605 (2021). Reviewer: Michael Reissig (Freiberg) MSC: 35L71 35B65 35L15 PDF BibTeX XML Cite \textit{C. Xiao} and \textit{F. Guo}, Math. Methods Appl. Sci. 44, No. 18, 14593--14605 (2021; Zbl 07441978) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime. (English) Zbl 1479.35120 Commun. Math. Sci. 19, No. 3, 829-849 (2021). MSC: 35B40 35K51 35K59 35Q91 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Commun. Math. Sci. 19, No. 3, 829--849 (2021; Zbl 1479.35120) Full Text: DOI OpenURL
Zhang, Qidi; Zheng, Lvsi A note on lower bound lifespan estimates for semi-linear wave/Klein-Gordon equations associated with the harmonic oscillator. (English) Zbl 1478.35045 Bull. Iran. Math. Soc. 47, Suppl. 1, 171-182 (2021). MSC: 35B40 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{L. Zheng}, Bull. Iran. Math. Soc. 47, 171--182 (2021; Zbl 1478.35045) Full Text: DOI OpenURL
Jiang, Kerui; Ling, Zhi; Liu, Zuhan; Zhou, Ling Existence, uniqueness and decay estimates on mild solutions to fractional chemotaxis-fluid systems. (English) Zbl 1475.35388 Topol. Methods Nonlinear Anal. 57, No. 1, 25-56 (2021). MSC: 35R11 35B40 35K45 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{K. Jiang} et al., Topol. Methods Nonlinear Anal. 57, No. 1, 25--56 (2021; Zbl 1475.35388) Full Text: DOI OpenURL
Fu, Yuqiu; Tataru, Daniel Null structures and degenerate dispersion relations in two space dimensions. (English) Zbl 1473.35006 Int. Math. Res. Not. 2021, No. 10, 7299-7338 (2021). MSC: 35A01 35A02 35G25 35Q55 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{D. Tataru}, Int. Math. Res. Not. 2021, No. 10, 7299--7338 (2021; Zbl 1473.35006) Full Text: DOI arXiv OpenURL
Ikeda, Masahiro; Sobajima, Motohiro Life-span of blowup solutions to semilinear wave equation with space-dependent critical damping. (English) Zbl 1472.35064 Funkc. Ekvacioj, Ser. Int. 64, No. 2, 137-162 (2021). MSC: 35B44 35L15 35L70 PDF BibTeX XML Cite \textit{M. Ikeda} and \textit{M. Sobajima}, Funkc. Ekvacioj, Ser. Int. 64, No. 2, 137--162 (2021; Zbl 1472.35064) Full Text: DOI arXiv OpenURL
Ding, Mengyao; Winkler, Michael Small-density solutions in Keller-Segel systems involving rapidly decaying diffusivities. (English) Zbl 1471.35064 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 47, 18 p. (2021). MSC: 35B45 35K51 35K65 35K59 92C17 PDF BibTeX XML Cite \textit{M. Ding} and \textit{M. Winkler}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 47, 18 p. (2021; Zbl 1471.35064) Full Text: DOI OpenURL
Seis, Christian; Winkler, Dominik A well-posedness result for a system of cross-diffusion equations. (English) Zbl 1470.35183 J. Evol. Equ. 21, No. 2, 2471-2489 (2021). MSC: 35K51 35K59 35A01 35A02 35D30 PDF BibTeX XML Cite \textit{C. Seis} and \textit{D. Winkler}, J. Evol. Equ. 21, No. 2, 2471--2489 (2021; Zbl 1470.35183) Full Text: DOI arXiv OpenURL
Chen, Xiaoli; Yang, Liu; Duan, Jinqiao; Karniadakis, George Em Solving inverse stochastic problems from discrete particle observations using the Fokker-Planck equation and physics-informed neural networks. (English) Zbl 1480.35377 SIAM J. Sci. Comput. 43, No. 3, B811-B830 (2021). Reviewer: Wasiur Rahman Khuda Bukhsh (Nottingham) MSC: 35Q84 62M45 60H35 60J65 35B30 92B20 PDF BibTeX XML Cite \textit{X. Chen} et al., SIAM J. Sci. Comput. 43, No. 3, B811--B830 (2021; Zbl 1480.35377) Full Text: DOI arXiv OpenURL
Hamouda, Makram; Hamza, Mohamed Ali Blow-up for wave equation with the scale-invariant damping and combined nonlinearities. (English) Zbl 1469.35055 Math. Methods Appl. Sci. 44, No. 1, 1127-1136 (2021). MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{M. Hamouda} and \textit{M. A. Hamza}, Math. Methods Appl. Sci. 44, No. 1, 1127--1136 (2021; Zbl 1469.35055) Full Text: DOI arXiv OpenURL
Katayama, Soichiro Global existence and the asymptotic behavior for systems of nonlinear wave equations violating the null condition. (English) Zbl 1469.35154 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 215-225 (2021). MSC: 35L72 35L52 35B40 PDF BibTeX XML Cite \textit{S. Katayama}, Adv. Stud. Pure Math. 85, 215--225 (2021; Zbl 1469.35154) Full Text: DOI OpenURL
Ikeda, Masahiro Blow-up of solutions to semilinear wave equations with a scaling invariant critical damping. (English) Zbl 1469.35057 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 163-170 (2021). MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{M. Ikeda}, Adv. Stud. Pure Math. 85, 163--170 (2021; Zbl 1469.35057) Full Text: DOI OpenURL
Dalla Riva, Matteo; Lanza de Cristoforis, Massimo; Musolino, Paolo Singularly perturbed boundary value problems. A functional analytic approach. (English) Zbl 1481.35005 Cham: Springer (ISBN 978-3-030-76258-2/hbk; 978-3-030-76259-9/ebook). xvi, 672 p. (2021). Reviewer: Sergei V. Rogosin (Minsk) MSC: 35-02 31B10 35B25 35B30 35J66 47H30 35B10 35C15 35C20 35J25 35P15 42B20 45P05 46N20 47G40 PDF BibTeX XML Cite \textit{M. Dalla Riva} et al., Singularly perturbed boundary value problems. A functional analytic approach. Cham: Springer (2021; Zbl 1481.35005) Full Text: DOI OpenURL
Lai, Ning-An; Zhou, Yi Global existence for semilinear wave equations with scaling invariant damping in 3-D. (English) Zbl 1466.35265 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 210, Article ID 112392, 12 p. (2021). MSC: 35L71 35L15 35B40 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{Y. Zhou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 210, Article ID 112392, 12 p. (2021; Zbl 1466.35265) Full Text: DOI arXiv OpenURL
Li, Mengni Asymptotic behavior of global solutions to one-dimension quasilinear wave equations. (English) Zbl 1472.35244 Dyn. Partial Differ. Equ. 18, No. 2, 81-100 (2021). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35B40 35L52 PDF BibTeX XML Cite \textit{M. Li}, Dyn. Partial Differ. Equ. 18, No. 2, 81--100 (2021; Zbl 1472.35244) Full Text: DOI OpenURL
Dong, Shijie Asymptotic behavior of the solution to the Klein-Gordon-Zakharov model in dimension two. (English) Zbl 1464.35156 Commun. Math. Phys. 384, No. 1, 587-607 (2021). MSC: 35L52 35L72 35B40 PDF BibTeX XML Cite \textit{S. Dong}, Commun. Math. Phys. 384, No. 1, 587--607 (2021; Zbl 1464.35156) Full Text: DOI arXiv OpenURL
Han, Zheng; Fang, Daoyuan Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. (English) Zbl 1460.35236 Commun. Pure Appl. Anal. 20, No. 2, 737-754 (2021). MSC: 35L72 35L20 58J45 70K45 PDF BibTeX XML Cite \textit{Z. Han} and \textit{D. Fang}, Commun. Pure Appl. Anal. 20, No. 2, 737--754 (2021; Zbl 1460.35236) Full Text: DOI OpenURL
Yoshikawa, Shuji; Kawashima, Shuichi Global existence for a semi-discrete scheme of some quasilinear hyperbolic balance laws. (English) Zbl 1459.35273 J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021). MSC: 35L45 35L60 39A12 35A35 65M06 PDF BibTeX XML Cite \textit{S. Yoshikawa} and \textit{S. Kawashima}, J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021; Zbl 1459.35273) Full Text: DOI OpenURL
Saut, Jean-Claude; Wang, Yuexun Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. (English) Zbl 1458.76016 Discrete Contin. Dyn. Syst. 41, No. 3, 1133-1155 (2021). MSC: 76B15 35Q53 26A33 PDF BibTeX XML Cite \textit{J.-C. Saut} and \textit{Y. Wang}, Discrete Contin. Dyn. Syst. 41, No. 3, 1133--1155 (2021; Zbl 1458.76016) Full Text: DOI arXiv OpenURL
Pham, Trieu Duong; Reissig, Michael Semilinear mixed problems in exterior domains for \(\sigma \)-evolution equations with friction and coefficients depending on spatial variables. (English) Zbl 1458.35273 J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021). MSC: 35L71 35L15 35R11 PDF BibTeX XML Cite \textit{T. D. Pham} and \textit{M. Reissig}, J. Math. Anal. Appl. 494, No. 1, Article ID 124587, 37 p. (2021; Zbl 1458.35273) Full Text: DOI OpenURL
D’Abbicco, Marcello; Palmieri, Alessandro A note on \(L^p - L^q\) estimates for semilinear critical dissipative Klein-Gordon equations. (English) Zbl 1465.35296 J. Dyn. Differ. Equations 33, No. 1, 63-74 (2021). Reviewer: Michael Reissig (Freiberg) MSC: 35L15 35L71 35B45 35B33 35B40 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{A. Palmieri}, J. Dyn. Differ. Equations 33, No. 1, 63--74 (2021; Zbl 1465.35296) Full Text: DOI OpenURL
Gao, Yili; Xue, Jun Local well-posedness and small data scattering for energy super-critical nonlinear wave equations. (English) Zbl 1458.35270 Appl. Anal. 100, No. 3, 663-674 (2021). MSC: 35L71 35L15 35B40 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{J. Xue}, Appl. Anal. 100, No. 3, 663--674 (2021; Zbl 1458.35270) Full Text: DOI OpenURL
de Rijk, Björn; Schneider, Guido Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. (English) Zbl 1456.35109 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 2, 38 p. (2021). MSC: 35K57 35K15 35B40 35A01 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{G. Schneider}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 2, 38 p. (2021; Zbl 1456.35109) Full Text: DOI arXiv OpenURL
Zha, Dongbing; Wang, Fanshun On initial-boundary value problems for one-dimension semilinear wave equations with null conditions. (English) Zbl 1455.35140 J. Differ. Equations 275, 638-651 (2021). MSC: 35L15 35L53 35L71 PDF BibTeX XML Cite \textit{D. Zha} and \textit{F. Wang}, J. Differ. Equations 275, 638--651 (2021; Zbl 1455.35140) Full Text: DOI OpenURL
Liu, Yang Global existence and exponential decay of strong solutions to the 2D density-dependent nematic liquid crystal flows with vacuum. (English) Zbl 1461.76033 Taiwanese J. Math. 24, No. 5, 1205-1228 (2020). MSC: 76A15 35Q35 PDF BibTeX XML Cite \textit{Y. Liu}, Taiwanese J. Math. 24, No. 5, 1205--1228 (2020; Zbl 1461.76033) Full Text: DOI Euclid OpenURL
Xu, Hongmei; Li, Qi Global existence of solutions for Cahn-Hilliard equation with inertial term. (Chinese. English summary) Zbl 1463.35006 J. Hubei Univ., Nat. Sci. 42, No. 3, 339-343 (2020). MSC: 35A01 35A09 35L15 PDF BibTeX XML Cite \textit{H. Xu} and \textit{Q. Li}, J. Hubei Univ., Nat. Sci. 42, No. 3, 339--343 (2020; Zbl 1463.35006) Full Text: DOI OpenURL
Jin, Zhentao; Zhou, Yi Formation of finite-time singularities for nonlinear hyperbolic systems with small initial disturbances. (English) Zbl 1454.35232 J. Math. Phys. 61, No. 7, 071510, 12 p. (2020). MSC: 35L45 76W05 35L60 35Q31 35B44 PDF BibTeX XML Cite \textit{Z. Jin} and \textit{Y. Zhou}, J. Math. Phys. 61, No. 7, 071510, 12 p. (2020; Zbl 1454.35232) Full Text: DOI arXiv OpenURL
Lindblad, Hans; Tohaneanu, Mihai A local energy estimate for wave equations on metrics asymptotically close to Kerr. (English) Zbl 1455.35022 Ann. Henri Poincaré 21, No. 11, 3659-3726 (2020). MSC: 35B40 35L72 58J45 35L15 35B45 35L40 83C57 PDF BibTeX XML Cite \textit{H. Lindblad} and \textit{M. Tohaneanu}, Ann. Henri Poincaré 21, No. 11, 3659--3726 (2020; Zbl 1455.35022) Full Text: DOI arXiv OpenURL
Larkin, N. A. Decay of regular solutions for the critical 2D Zakharov-Kuznetsov equation posed on rectangles. (English) Zbl 1453.35031 J. Math. Phys. 61, No. 6, 061509, 13 p. (2020). MSC: 35B40 35G31 35Q53 PDF BibTeX XML Cite \textit{N. A. Larkin}, J. Math. Phys. 61, No. 6, 061509, 13 p. (2020; Zbl 1453.35031) Full Text: DOI OpenURL
Ebert, M. R.; Girardi, G.; Reissig, M. Critical regularity of nonlinearities in semilinear classical damped wave equations. (English) Zbl 1450.35158 Math. Ann. 378, No. 3-4, 1311-1326 (2020). MSC: 35L15 35L71 35B44 PDF BibTeX XML Cite \textit{M. R. Ebert} et al., Math. Ann. 378, No. 3--4, 1311--1326 (2020; Zbl 1450.35158) Full Text: DOI arXiv OpenURL
Kainane Mezadek, Abdelatif Global existence of small data solutions to semi-linear fractional \(\sigma\)-evolution equations with mass and nonlinear memory. (English) Zbl 1450.35271 Mediterr. J. Math. 17, No. 5, Paper No. 159, 20 p. (2020). MSC: 35R11 35A01 35K15 PDF BibTeX XML Cite \textit{A. Kainane Mezadek}, Mediterr. J. Math. 17, No. 5, Paper No. 159, 20 p. (2020; Zbl 1450.35271) Full Text: DOI OpenURL
Bai, Xueli; He, Xiaoqing Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications. (English) Zbl 1447.35231 J. Differ. Equations 269, No. 11, 9868-9903 (2020). MSC: 35P15 35B10 35B25 35K51 47A75 35B30 92D25 PDF BibTeX XML Cite \textit{X. Bai} and \textit{X. He}, J. Differ. Equations 269, No. 11, 9868--9903 (2020; Zbl 1447.35231) Full Text: DOI OpenURL
Zha, Dongbing; Peng, Weimin; Qin, Yuming Global existence and asymptotic behavior for some multidimensional quasilinear hyperbolic systems. (English) Zbl 1448.35328 J. Differ. Equations 269, No. 11, 9297-9309 (2020). MSC: 35L45 35L60 35B40 PDF BibTeX XML Cite \textit{D. Zha} et al., J. Differ. Equations 269, No. 11, 9297--9309 (2020; Zbl 1448.35328) Full Text: DOI OpenURL
Mezadek, Mourad Kainane; Mezadek, Mohamed Kainane; Reissig, Michael Semilinear wave models with friction and viscoelastic damping. (English) Zbl 1447.35211 Math. Methods Appl. Sci. 43, No. 6, 3117-3147 (2020). MSC: 35L15 35L71 PDF BibTeX XML Cite \textit{M. K. Mezadek} et al., Math. Methods Appl. Sci. 43, No. 6, 3117--3147 (2020; Zbl 1447.35211) Full Text: DOI OpenURL
Su, Hailing; Guo, Cuihua The solution of anisotropic sixth-order Schrödinger equation. (English) Zbl 1446.35188 Math. Methods Appl. Sci. 43, No. 4, 1868-1891 (2020). MSC: 35Q55 35Q41 35B30 47H10 35A01 35A02 PDF BibTeX XML Cite \textit{H. Su} and \textit{C. Guo}, Math. Methods Appl. Sci. 43, No. 4, 1868--1891 (2020; Zbl 1446.35188) Full Text: DOI OpenURL
Guo, Zihua; Shen, Jia Scattering for the quadratic Klein-Gordon equations. (English) Zbl 1441.35170 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 3, Paper No. 31, 33 p. (2020). MSC: 35L71 35L15 35B40 35B44 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{J. Shen}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 3, Paper No. 31, 33 p. (2020; Zbl 1441.35170) Full Text: DOI arXiv OpenURL
Dong, Shijie; Wyatt, Zoe Stability of a coupled wave-Klein-Gordon system with quadratic nonlinearities. (English) Zbl 1471.35032 J. Differ. Equations 269, No. 9, 7470-7497 (2020). MSC: 35B35 35L52 35L71 PDF BibTeX XML Cite \textit{S. Dong} and \textit{Z. Wyatt}, J. Differ. Equations 269, No. 9, 7470--7497 (2020; Zbl 1471.35032) Full Text: DOI arXiv OpenURL
Bai, Ruobing; Wu, Yifei; Xue, Jun Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations. (English) Zbl 1440.35304 J. Differ. Equations 269, No. 9, 6422-6447 (2020). MSC: 35Q55 35B40 35C08 35P25 PDF BibTeX XML Cite \textit{R. Bai} et al., J. Differ. Equations 269, No. 9, 6422--6447 (2020; Zbl 1440.35304) Full Text: DOI arXiv OpenURL
Dao, Tuan Anh Existence of global solutions for a weakly coupled system of semilinear viscoelastic damped \(\sigma\)-evolution equations. (English) Zbl 1441.35159 Rocky Mt. J. Math. 50, No. 2, 527-542 (2020). MSC: 35L56 35L30 35L71 35R11 PDF BibTeX XML Cite \textit{T. A. Dao}, Rocky Mt. J. Math. 50, No. 2, 527--542 (2020; Zbl 1441.35159) Full Text: DOI Euclid OpenURL
Lai, Ning-An; Tu, Ziheng Strauss exponent for semilinear wave equations with scattering space dependent damping. (English) Zbl 1445.35251 J. Math. Anal. Appl. 489, No. 2, Article ID 124189, 23 p. (2020). Reviewer: Chengbo Wang (Hangzhou) MSC: 35L71 35B40 35B33 35B44 35B09 35L05 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{Z. Tu}, J. Math. Anal. Appl. 489, No. 2, Article ID 124189, 23 p. (2020; Zbl 1445.35251) Full Text: DOI arXiv OpenURL
Zha, Dongbing On one-dimension quasilinear wave equations with null conditions. (English) Zbl 1441.35176 Calc. Var. Partial Differ. Equ. 59, No. 3, Paper No. 94, 19 p. (2020). MSC: 35L72 35L52 PDF BibTeX XML Cite \textit{D. Zha}, Calc. Var. Partial Differ. Equ. 59, No. 3, Paper No. 94, 19 p. (2020; Zbl 1441.35176) Full Text: DOI arXiv OpenURL
D’Abbicco, Marcello; De Luca, Alessandra Decay estimates for the double dispersion equation with initial data in real Hardy spaces. (English) Zbl 1437.35450 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 363-386 (2020). MSC: 35L30 35L76 42B15 42B30 42B37 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{A. De Luca}, J. Pseudo-Differ. Oper. Appl. 11, No. 1, 363--386 (2020; Zbl 1437.35450) Full Text: DOI OpenURL
Hou, Fei; Yin, Huicheng On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases. (English) Zbl 1437.35458 Discrete Contin. Dyn. Syst. 40, No. 3, 1435-1492 (2020). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L45 35Q31 76N15 35L67 PDF BibTeX XML Cite \textit{F. Hou} and \textit{H. Yin}, Discrete Contin. Dyn. Syst. 40, No. 3, 1435--1492 (2020; Zbl 1437.35458) Full Text: DOI OpenURL
Zhang, Qidi Global existence and finite time blow up for the weighted semilinear wave equation. (English) Zbl 1439.35344 Nonlinear Anal., Real World Appl. 51, Article ID 103006, 13 p. (2020). MSC: 35L71 35L15 35B44 PDF BibTeX XML Cite \textit{Q. Zhang}, Nonlinear Anal., Real World Appl. 51, Article ID 103006, 13 p. (2020; Zbl 1439.35344) Full Text: DOI OpenURL
de Rijk, Björn; Schneider, Guido Global existence and decay in nonlinearly coupled reaction-diffusion-advection equations with different velocities. (English) Zbl 1435.35198 J. Differ. Equations 268, No. 7, 3392-3448 (2020). Reviewer: Denise Huet (Nancy) MSC: 35K57 35K45 35A01 35B40 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{G. Schneider}, J. Differ. Equations 268, No. 7, 3392--3448 (2020; Zbl 1435.35198) Full Text: DOI arXiv OpenURL
Li, Feng; Li, Yuxiang Global solvability and large-time behavior to a three-dimensional chemotaxis-Stokes system modeling coral fertilization. (English) Zbl 1437.35078 J. Math. Anal. Appl. 483, No. 2, Article ID 123615, 15 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B40 35Q31 35K57 92C17 35K51 PDF BibTeX XML Cite \textit{F. Li} and \textit{Y. Li}, J. Math. Anal. Appl. 483, No. 2, Article ID 123615, 15 p. (2020; Zbl 1437.35078) Full Text: DOI OpenURL
Ikeda, Masahiro; Wakasugi, Yuta Global well-posedness for the semilinear wave equation with time dependent damping in the overdamping case. (English) Zbl 1450.35174 Proc. Am. Math. Soc. 148, No. 1, 157-172 (2020). MSC: 35L71 35L15 35A01 PDF BibTeX XML Cite \textit{M. Ikeda} and \textit{Y. Wakasugi}, Proc. Am. Math. Soc. 148, No. 1, 157--172 (2020; Zbl 1450.35174) Full Text: DOI arXiv OpenURL
Katayama, Soichiro Remarks on the asymptotic behavior of global solutions to systems of semilinear wave equations. (English) Zbl 1441.35173 Kato, Keiichi (ed.) et al., Asymptotic analysis for nonlinear dispersive and wave equations. Proceedings of the international conference on asymptotic analysis for nonlinear dispersive and wave equations, Osaka University, Osaka, Japan, September 6–9, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 81, 55-84 (2019). MSC: 35L71 35B40 35L15 PDF BibTeX XML Cite \textit{S. Katayama}, Adv. Stud. Pure Math. 81, 55--84 (2019; Zbl 1441.35173) Full Text: DOI Euclid OpenURL
D’Abbicco, Marcello; Ikehata, Ryo; Takeda, Hiroshi Critical exponent for semi-linear wave equations with double damping terms in exterior domains. (English) Zbl 1435.35251 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 56, 25 p. (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35B40 35B33 35B44 35L20 PDF BibTeX XML Cite \textit{M. D'Abbicco} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 56, 25 p. (2019; Zbl 1435.35251) Full Text: DOI OpenURL
Yoshikawa, Shuji Remarks on energy methods for structure-preserving finite difference schemes – small data global existence and unconditional error estimate. (English) Zbl 1428.74223 Appl. Math. Comput. 341, 80-92 (2019). MSC: 74S20 65M06 65M15 PDF BibTeX XML Cite \textit{S. Yoshikawa}, Appl. Math. Comput. 341, 80--92 (2019; Zbl 1428.74223) Full Text: DOI OpenURL
Girardi, Giovanni Semilinear damped Klein-Gordon models with time-dependent coefficients. (English) Zbl 1428.35225 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 203-216 (2019). MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{G. Girardi}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 203--216 (2019; Zbl 1428.35225) Full Text: DOI OpenURL
Ebert, Marcelo Rempel; Lourenço, Linniker Monteiro The critical exponent for evolution models with power non-linearity. (English) Zbl 1428.35060 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 153-177 (2019). MSC: 35B45 35B33 35R11 35L15 35L71 PDF BibTeX XML Cite \textit{M. R. Ebert} and \textit{L. M. Lourenço}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 153--177 (2019; Zbl 1428.35060) Full Text: DOI OpenURL
Djaouti, Abdelhamid Mohammed; Reissig, Michael Weakly coupled systems of semilinear effectively damped waves with different time-dependent coefficients in the dissipation terms and different power nonlinearities. (English) Zbl 1428.35207 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 97-128 (2019). MSC: 35L52 35L71 PDF BibTeX XML Cite \textit{A. M. Djaouti} and \textit{M. Reissig}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 97--128 (2019; Zbl 1428.35207) Full Text: DOI OpenURL
Lian, Jiali Global well-posedness of the free-surface damped incompressible Euler equations with surface tension. (English) Zbl 1421.35205 Commun. Math. Sci. 17, No. 3, 587-608 (2019). MSC: 35L50 35L60 35Q35 76B15 35R35 35Q31 PDF BibTeX XML Cite \textit{J. Lian}, Commun. Math. Sci. 17, No. 3, 587--608 (2019; Zbl 1421.35205) Full Text: DOI OpenURL
Waters, Alden Unique determination of sound speeds for coupled systems of semi-linear wave equations. (English) Zbl 1421.35207 Indag. Math., New Ser. 30, No. 5, 904-919 (2019). MSC: 35L52 35L71 35R30 35A02 PDF BibTeX XML Cite \textit{A. Waters}, Indag. Math., New Ser. 30, No. 5, 904--919 (2019; Zbl 1421.35207) Full Text: DOI arXiv OpenURL
Röckner, Michael; Zhu, Rongchan; Zhu, Xiangchan A remark on global solutions to random 3D vorticity equations for small initial data. (English) Zbl 1420.60087 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4021-4030 (2019). MSC: 60H15 82C28 PDF BibTeX XML Cite \textit{M. Röckner} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4021--4030 (2019; Zbl 1420.60087) Full Text: DOI arXiv OpenURL
Ding, Mengyao; Zhao, Xiangdong \(L^\sigma\)-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. (English) Zbl 1420.35121 Discrete Contin. Dyn. Syst., Ser. B 24, No. 10, 5297-5315 (2019). MSC: 35K55 35B35 92C17 PDF BibTeX XML Cite \textit{M. Ding} and \textit{X. Zhao}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 10, 5297--5315 (2019; Zbl 1420.35121) Full Text: DOI OpenURL
Yamazaki, Taeko Asymptotic profile of solutions for semilinear wave equations with structural damping. (English) Zbl 1437.35505 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 16, 43 p. (2019). MSC: 35L71 35L15 35B40 35R11 PDF BibTeX XML Cite \textit{T. Yamazaki}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 16, 43 p. (2019; Zbl 1437.35505) Full Text: DOI arXiv OpenURL
Su, Hailing; Guo, Cuihua The global solution of anisotropic fourth-order Schrödinger equation. (English) Zbl 1459.35344 Adv. Difference Equ. 2019, Paper No. 173, 17 p. (2019). MSC: 35Q55 35B65 35B40 35B30 PDF BibTeX XML Cite \textit{H. Su} and \textit{C. Guo}, Adv. Difference Equ. 2019, Paper No. 173, 17 p. (2019; Zbl 1459.35344) Full Text: DOI OpenURL
Kato, Masakazu; Sakuraba, Miku Global existence and blow-up for semilinear damped wave equations in three space dimensions. (English) Zbl 1418.35271 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 209-225 (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35E15 35A01 35B44 35L15 PDF BibTeX XML Cite \textit{M. Kato} and \textit{M. Sakuraba}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 209--225 (2019; Zbl 1418.35271) Full Text: DOI arXiv OpenURL
Wakasa, Kyouhei; Yordanov, Borislav On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case. (English) Zbl 1418.35047 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 180, 67-74 (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{K. Wakasa} and \textit{B. Yordanov}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 180, 67--74 (2019; Zbl 1418.35047) Full Text: DOI arXiv OpenURL
Giacomelli, Lorenzo; Łasica, Michał; Moll, Salvador Regular 1-harmonic flow. (English) Zbl 1436.35229 Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 82, 24 p. (2019). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K51 35A01 35A02 35K59 35B40 35D35 35K92 35R01 53C21 68U10 PDF BibTeX XML Cite \textit{L. Giacomelli} et al., Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 82, 24 p. (2019; Zbl 1436.35229) Full Text: DOI arXiv OpenURL
Jiang, Ning; Luo, Yi-Long; Tang, Shaojun On well-posedness of Ericksen-Leslie’s parabolic-hyperbolic liquid crystal model in compressible flow. (English) Zbl 1414.35168 Math. Models Methods Appl. Sci. 29, No. 1, 121-183 (2019). MSC: 35Q35 35D35 76A15 76E19 35Q30 76N10 PDF BibTeX XML Cite \textit{N. Jiang} et al., Math. Models Methods Appl. Sci. 29, No. 1, 121--183 (2019; Zbl 1414.35168) Full Text: DOI arXiv OpenURL
Chen, Wenhui; Reissig, Michael Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D. (English) Zbl 1414.35126 Math. Methods Appl. Sci. 42, No. 2, 667-709 (2019). MSC: 35L71 35L52 PDF BibTeX XML Cite \textit{W. Chen} and \textit{M. Reissig}, Math. Methods Appl. Sci. 42, No. 2, 667--709 (2019; Zbl 1414.35126) Full Text: DOI arXiv OpenURL
Bai, Yige; Liu, Mengyun Global existence for semilinear damped wave equations in the scattering case. (English) Zbl 1424.35237 Differ. Integral Equ. 32, No. 3-4, 233-248 (2019). Reviewer: Marie Kopáčková (Praha) MSC: 35L05 35L15 35L71 PDF BibTeX XML Cite \textit{Y. Bai} and \textit{M. Liu}, Differ. Integral Equ. 32, No. 3--4, 233--248 (2019; Zbl 1424.35237) Full Text: arXiv OpenURL
Lai, Ning-An; Takamura, Hiroyuki Nonexistence of global solutions of wave equations with weak time-dependent damping and combined nonlinearity. (English) Zbl 1415.35203 Nonlinear Anal., Real World Appl. 45, 83-96 (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35L05 35L15 35B44 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{H. Takamura}, Nonlinear Anal., Real World Appl. 45, 83--96 (2019; Zbl 1415.35203) Full Text: DOI arXiv OpenURL
Zha, Dongbing Global and almost global existence for general quasilinear wave equations in two space dimensions. (English. French summary) Zbl 1411.35210 J. Math. Pures Appl. (9) 123, 270-299 (2019). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35L15 PDF BibTeX XML Cite \textit{D. Zha}, J. Math. Pures Appl. (9) 123, 270--299 (2019; Zbl 1411.35210) Full Text: DOI OpenURL
Lai, Ning-An; Zhou, Yi The sharp lifespan estimate for semilinear damped wave equation with Fujita critical power in higher dimensions. (English. French summary) Zbl 1411.35207 J. Math. Pures Appl. (9) 123, 229-243 (2019). Reviewer: Marcelo M. Cavalcanti (Maringá) MSC: 35L71 35L15 35B44 35B33 35A09 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{Y. Zhou}, J. Math. Pures Appl. (9) 123, 229--243 (2019; Zbl 1411.35207) Full Text: DOI arXiv OpenURL
Dong, Hongjie; Kim, Doyoon \(L_{p}\)-estimates for time fractional parabolic equations with coefficients measurable in time. (English) Zbl 1447.35352 Adv. Math. 345, 289-345 (2019). MSC: 35R11 35K15 26A33 35R05 PDF BibTeX XML Cite \textit{H. Dong} and \textit{D. Kim}, Adv. Math. 345, 289--345 (2019; Zbl 1447.35352) Full Text: DOI arXiv OpenURL
Palmieri, Alessandro; Tu, Ziheng Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity. (English) Zbl 1415.35174 J. Math. Anal. Appl. 470, No. 1, 447-469 (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L15 35L71 35B40 35B44 PDF BibTeX XML Cite \textit{A. Palmieri} and \textit{Z. Tu}, J. Math. Anal. Appl. 470, No. 1, 447--469 (2019; Zbl 1415.35174) Full Text: DOI arXiv OpenURL
Ikeda, Masahiro; Sobajima, Motohiro Remark on upper bound for lifespan of solutions to semilinear evolution equations in a two-dimensional exterior domain. (English) Zbl 1411.35052 J. Math. Anal. Appl. 470, No. 1, 318-326 (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35B44 35B40 35L20 35B33 PDF BibTeX XML Cite \textit{M. Ikeda} and \textit{M. Sobajima}, J. Math. Anal. Appl. 470, No. 1, 318--326 (2019; Zbl 1411.35052) Full Text: DOI arXiv OpenURL
Dzhobulaeva, Zh. K. The estimates of the solution of the model problem for the system of parabolic equations in Hölder space. (Russian. English summary) Zbl 07401922 Mat. Zh. 18, No. 2, 71-86 (2018). MSC: 35R35 35K20 35B45 35B30 35C15 PDF BibTeX XML Cite \textit{Zh. K. Dzhobulaeva}, Mat. Zh. 18, No. 2, 71--86 (2018; Zbl 07401922) OpenURL
Delort, Jean-Marc Long time existence results for solutions of water waves equations. (English) Zbl 1448.76034 Sirakov, Boyan (ed.) et al., Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 2241-2260 (2018). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{J.-M. Delort}, in: Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1--9, 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 2241--2260 (2018; Zbl 1448.76034) Full Text: DOI Link OpenURL
Chen, Defu; Ye, Xia Global well-posedness for the density-dependent incompressible magnetohydrodynamic flows in bounded domains. (English) Zbl 1438.35081 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1833-1845 (2018). MSC: 35B45 35L65 35Q60 76N10 PDF BibTeX XML Cite \textit{D. Chen} and \textit{X. Ye}, Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1833--1845 (2018; Zbl 1438.35081) Full Text: DOI OpenURL
Zhou, Xuhuan; Xiao, Weiliang Algebra properties in Fourier-Besov spaces and their applications. (English) Zbl 1415.46026 J. Funct. Spaces 2018, Article ID 3629179, 10 p. (2018). MSC: 46E35 35Q30 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{W. Xiao}, J. Funct. Spaces 2018, Article ID 3629179, 10 p. (2018; Zbl 1415.46026) Full Text: DOI OpenURL
Candy, Timothy; Herr, Sebastian On the division problem for the wave maps equation. (English) Zbl 1411.35198 Ann. PDE 4, No. 2, Paper No. 17, 61 p. (2018). MSC: 35L52 35L15 PDF BibTeX XML Cite \textit{T. Candy} and \textit{S. Herr}, Ann. PDE 4, No. 2, Paper No. 17, 61 p. (2018; Zbl 1411.35198) Full Text: DOI arXiv OpenURL
Nishihara, Kenji; Sobajima, Motohiro; Wakasugi, Yuta Critical exponent for the semilinear wave equations with a damping increasing in the far field. (English) Zbl 1415.35207 NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 6, Paper No. 55, 32 p. (2018). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35L15 35A01 35B44 35B33 PDF BibTeX XML Cite \textit{K. Nishihara} et al., NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 6, Paper No. 55, 32 p. (2018; Zbl 1415.35207) Full Text: DOI arXiv OpenURL
Lindblad, Hans; Tohaneanu, Mihai Global existence for quasilinear wave equations close to Schwarzschild. (English) Zbl 1411.35209 Commun. Partial Differ. Equations 43, No. 6, 893-944 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35L15 35B40 35Q75 PDF BibTeX XML Cite \textit{H. Lindblad} and \textit{M. Tohaneanu}, Commun. Partial Differ. Equations 43, No. 6, 893--944 (2018; Zbl 1411.35209) Full Text: DOI arXiv OpenURL
Bai, Xueli; Liu, Suying A new criterion to a two-chemical substances chemotaxis system with critical dimension. (English) Zbl 1409.35038 Discrete Contin. Dyn. Syst., Ser. B 23, No. 9, 3717-3721 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35B45 35Q92 35K51 92C17 35K59 35B44 PDF BibTeX XML Cite \textit{X. Bai} and \textit{S. Liu}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 9, 3717--3721 (2018; Zbl 1409.35038) Full Text: DOI OpenURL
Stingo, Annalaura Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data. (Existence globale et comportement asymptotique de petites solutions pour des équation de Klein-Gordon critiques 1D.) (English. French summary) Zbl 1409.35146 Bull. Soc. Math. Fr. 146, No. 1, 155-213 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35L15 PDF BibTeX XML Cite \textit{A. Stingo}, Bull. Soc. Math. Fr. 146, No. 1, 155--213 (2018; Zbl 1409.35146) Full Text: DOI arXiv OpenURL
Chandru, M.; Das, P.; Ramos, H. Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. (English) Zbl 1403.35024 Math. Methods Appl. Sci. 41, No. 14, 5359-5387 (2018). MSC: 35B25 35K20 35K51 65M06 65M50 65N12 65N50 35R05 PDF BibTeX XML Cite \textit{M. Chandru} et al., Math. Methods Appl. Sci. 41, No. 14, 5359--5387 (2018; Zbl 1403.35024) Full Text: DOI OpenURL
Herr, Sebastian; Yang, Changhun Critical well-posedness and scattering results for fractional Hartree-type equations. (English) Zbl 1463.35500 Differ. Integral Equ. 31, No. 9-10, 701-714 (2018). MSC: 35R11 35B33 35P25 35Q40 35Q55 PDF BibTeX XML Cite \textit{S. Herr} and \textit{C. Yang}, Differ. Integral Equ. 31, No. 9--10, 701--714 (2018; Zbl 1463.35500) Full Text: arXiv OpenURL
Palmieri, Alessandro; Reissig, Michael Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. II. (English) Zbl 1397.35156 Math. Nachr. 291, No. 11-12, 1859-1892 (2018). MSC: 35L71 35L05 42B37 26A33 35L15 46E35 47H30 PDF BibTeX XML Cite \textit{A. Palmieri} and \textit{M. Reissig}, Math. Nachr. 291, No. 11--12, 1859--1892 (2018; Zbl 1397.35156) Full Text: DOI OpenURL
Katayama, Soichiro Global existence for systems of nonlinear wave and Klein-Gordon equations with compactly supported initial data. (English) Zbl 1394.35281 Commun. Pure Appl. Anal. 17, No. 4, 1479-1497 (2018). MSC: 35L70 35L52 PDF BibTeX XML Cite \textit{S. Katayama}, Commun. Pure Appl. Anal. 17, No. 4, 1479--1497 (2018; Zbl 1394.35281) Full Text: DOI OpenURL
Dinh, Van Duong On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. (English) Zbl 1402.35297 Discrete Contin. Dyn. Syst. 38, No. 3, 1127-1143 (2018). MSC: 35R11 35A01 35E15 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Discrete Contin. Dyn. Syst. 38, No. 3, 1127--1143 (2018; Zbl 1402.35297) Full Text: DOI arXiv OpenURL
Mohammed Djaouti, Abdelhamid; Reissig, Michael Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data. (English) Zbl 1397.35149 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 175, 28-55 (2018). MSC: 35L52 35L71 PDF BibTeX XML Cite \textit{A. Mohammed Djaouti} and \textit{M. Reissig}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 175, 28--55 (2018; Zbl 1397.35149) Full Text: DOI OpenURL
Jiang, Ning; Liu, Yanan; Zhang, Teng-Fei Global classical solutions to a compressible model for micro-macro polymeric fluids near equilibrium. (English) Zbl 1433.35229 SIAM J. Math. Anal. 50, No. 4, 4149-4179 (2018). Reviewer: Weihua Wang (Beijing) MSC: 35Q30 35A09 35B65 35A15 35A01 35Q84 76N10 PDF BibTeX XML Cite \textit{N. Jiang} et al., SIAM J. Math. Anal. 50, No. 4, 4149--4179 (2018; Zbl 1433.35229) Full Text: DOI arXiv OpenURL
Djaouti, Abdelhamid Mohammed On the benefit of different additional regularity for the weakly coupled systems of semilinear effectively damped waves. (English) Zbl 1395.35140 Mediterr. J. Math. 15, No. 3, Paper No. 115, 11 p. (2018). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L52 35L71 35B40 35B65 PDF BibTeX XML Cite \textit{A. M. Djaouti}, Mediterr. J. Math. 15, No. 3, Paper No. 115, 11 p. (2018; Zbl 1395.35140) Full Text: DOI OpenURL