×

Finite element approximation of finite deformation dislocation mechanics. (English) Zbl 1442.74038

Summary: We develop and demonstrate the first general computational tool for finite deformation static and dynamic dislocation mechanics. A finite element formulation of finite deformation (Mesoscale) Field Dislocation Mechanics theory is presented. The model is a minimal enhancement of classical crystal/\( J_2\) plasticity that fundamentally accounts for polar/excess dislocations at the mesoscale. It has the ability to compute the static and dynamic finite deformation stress fields of arbitrary (evolving) dislocation distributions in finite bodies of arbitrary shape and elastic anisotropy under general boundary conditions. This capability is used to present a comparison of the static stress fields, at finite and small deformations, for screw and edge dislocations, revealing heretofore unexpected differences. The computational framework is verified against the sharply contrasting predictions of geometrically linear and nonlinear theories for the stress field of a spatially homogeneous dislocation distribution in the body, as well as against other exact results of the theory. Verification tests of the time-dependent numerics are also presented. Size effects in crystal and isotropic versions of the theory are shown to be a natural consequence of the model and are validated against available experimental data. With inertial effects incorporated, the development of an (asymmetric) propagating Mach cone is demonstrated in the finite deformation theory when a dislocation moves at speeds greater than the linear elastic shear wave speed of the material.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: Theory and experiment, Acta Metall. Mater., 42, 2, 475-487 (1994)
[2] Liu, D.; He, Y.; Tang, X.; Ding, H.; Hu, P.; Cao, P., Size effects in the torsion of microscale copper wires: Experiment and analysis, Scr. Mater., 66, 6, 406-409 (2012)
[3] Stelmashenko, N. A.; Walls, M. G.; Brown, L. M.; Milman, Y. V., Microindentations on W and Mo oriented single crystals: an STM study, Acta Metall. Mater., 41, 10, 2855-2865 (1993)
[4] Ebeling, R.; Ashby, M. F., Dispersion hardening of copper single crystals, Phil. Mag., 13, 124, 805-834 (1966)
[5] Ma, Q.; Clarke, D. R., Size dependent hardness of silver single crystals, J. Mater. Res., 10, 4, 853-863 (1995)
[6] Stölken, J. S.; Evans, A. G., A microbend test method for measuring the plasticity length scale, Acta Mater., 46, 14, 5109-5115 (1998)
[7] Kelly, A.; Nicholson, R. B., Precipitation hardening, Prog. Mater. Sci., 10, 151-391 (1963)
[8] Russell, K. G.; Ashby, M. F., Slip in aluminum crystals containing strong, plate-like particles, Acta Metall., 18, 8, 891-901 (1970)
[9] Mughrabi, H.; Wüthrich, C., Asymmetry of slip and shape changes during cyclic deformation of \(\alpha \)-iron single crystals, Phil. Mag., 33, 6, 963-984 (1976)
[10] Mughrabi, H.; Ackermann, F. U.; Herz, K., Persistent slipbands in fatigued face-centered and body-centered cubic metals, (Fatigue Mechanisms (1979), ASTM International)
[11] Mughrabi, H.; Herz, K.; Stark, X., Cyclic deformation and fatigue behaviour of \(\alpha \)-iron mono-and polycrystals, Int. J. Fract., 17, 2, 193-220 (1981)
[12] Hughes, D. A.; Hansen, N., Microstructure and strength of nickel at large strains, Acta Mater., 48, 11, 2985-3004 (2000)
[13] Jin, N. Y.; Winter, A. T., Dislocation structures in cyclically deformed [001] copper crystals, Acta Metall., 32, 8, 1173-1176 (1984)
[14] Theyssier, M. C.; Chenal, B.; Driver, J. H.; Hansen, N., Mosaic dislocation structures in aluminium crystals deformed in multiple slip at 0.5 to \(0.8 T_M\), Phys. Status Solidi a, 149, 1, 367-378 (1995)
[15] Humphreys, F. J.; Hatherly, M., Recrystallization and Related Annealing Phenomena (2012), Elsevier
[16] Reed, R. C., The Superalloys: Fundamentals and Applications (2006), Cambridge University Press
[17] Toupin, R. A., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 1, 385-414 (1962) · Zbl 0112.16805
[18] Wang, Z.; Rudraraju, S.; Garikipati, K., A three dimensional field formulation, and isogeometric solutions to point and line defects using Toupin’s theory of gradient elasticity at finite strains, J. Mech. Phys. Solids, 94, 336-361 (2016)
[19] Acharya, A.; Beaudoin, A. J., Grain-size effect in viscoplastic polycrystals at moderate strains, J. Mech. Phys. Solids, 48, 10, 2213-2230 (2000) · Zbl 0958.74013
[20] Arsenlis, A.; Parks, D. M.; Becker, R.; Bulatov, V. V., On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals, J. Mech. Phys. Solids, 52, 6, 1213-1246 (2004) · Zbl 1079.74523
[21] Tang, H.; Choi, Y. S.; Acharya, A.; Saigal, S., Effects of lattice incompatibility-induced hardening on the fracture behavior of ductile single crystals, J. Mech. Phys. Solids, 52, 12, 2841-2867 (2004) · Zbl 1115.74305
[22] Evers, L. P.; Brekelmans, W. A.M.; Geers, M. G.D., Non-local crystal plasticity model with intrinsic SSD and GND effects, J. Mech. Phys. Solids, 52, 10, 2379-2401 (2004) · Zbl 1115.74313
[23] Kuroda, M.; Tvergaard, V., A finite deformation theory of higher-order gradient crystal plasticity, J. Mech. Phys. Solids, 56, 8, 2573-2584 (2008) · Zbl 1171.74324
[24] Ma, A.; Roters, F.; Raabe, D., A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Mater., 54, 8, 2169-2179 (2006)
[25] Niordson, C. F.; Redanz, P., Size-effects in plane strain sheet-necking, J. Mech. Phys. Solids, 52, 11, 2431-2454 (2004) · Zbl 1084.74011
[26] Niordson, C. F.; Tvergaard, V., Instabilities in power law gradient hardening materials, Int. J. Solids Struct., 42, 9-10, 2559-2573 (2005) · Zbl 1094.74013
[27] Lynggaard, J.; Nielsen, K. L.; Niordson, C. F., Finite strain analysis of size effects in wedge indentation into a face-centered cubic (FCC) single crystal, Eur. J. Mech. A Solids, 76, 193-207 (2019) · Zbl 1472.74045
[28] Niordson, C. F.; Tvergaard, V., A homogenized model for size-effects in porous metals, J. Mech. Phys. Solids, 123, 222-233 (2019)
[29] Erdle, H.; Böhlke, T., A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip, Comput. Mech., 60, 6, 923-942 (2017) · Zbl 1398.74048
[30] Kaiser, T.; Menzel, A., A dislocation density tensor-based crystal plasticity framework, J. Mech. Phys. Solids, 131, 276-302 (2019)
[31] Ling, C.; Forest, S.; Besson, J.; Tanguy, B.; Latourte, F., A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals, Int. J. Solids Struct., 134, 43-69 (2018)
[32] Kuroda, A., Nonuniform and localized deformation in single crystals under dynamic tensile loading, J. Mech. Phys. Solids, 125, 347-359 (2019)
[33] Arora, R.; Acharya, A., Dislocation pattern formation in finite deformation crystal plasticity, Int. J. Solids Struct. (2019)
[34] Acharya, A., A model of crystal plasticity based on the theory of continuously distributed dislocations, J. Mech. Phys. Solids, 49, 4, 761-784 (2001) · Zbl 1017.74010
[35] Acharya, A., Driving forces and boundary conditions in continuum dislocation mechanics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459, 2034, 1343-1363 (2003) · Zbl 1041.74014
[36] Acharya, A., Constitutive analysis of finite deformation field dislocation mechanics, J. Mech. Phys. Solids, 52, 2, 301-316 (2004) · Zbl 1106.74315
[37] Acharya, A.; Roy, A., Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I, J. Mech. Phys. Solids, 54, 8, 1687-1710 (2006) · Zbl 1120.74328
[38] Acharya, A., Microcanonical entropy and mesoscale dislocation mechanics and plasticity, J. Elasticity, 104, 1-2, 23-44 (2011) · Zbl 1320.74010
[39] Babic, M., Average balance equations for granular materials, Internat. J. Engrg. Sci., 35, 5, 523-548 (1997) · Zbl 0915.73010
[40] Roy, A.; Acharya, A., Finite element approximation of field dislocation mechanics, J. Mech. Phys. Solids, 53, 1, 143-170 (2005) · Zbl 1134.74413
[41] Roy, A.; Acharya, A., Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part II, J. Mech. Phys. Solids, 54, 8, 1711-1743 (2006) · Zbl 1120.74333
[42] Puri, S., Modeling Dislocation Sources and Plastic Flow Through Grain Boundaries in Mesoscopic Field Dislocation Mechanics (2009), Carnegie Mellon University, (Ph.D. thesis)
[43] Peirce, D.; Asaro, R. J.; Needleman, A., Material rate dependence and localized deformation in crystalline solids, Acta Metall., 31, 12, 1951-1976 (1983)
[44] McMeeking, R. M.; Rice, J. R., Finite-element formulations for problems of large elastic-plastic deformation, Int. J. Solids Struct., 11, 5, 601-616 (1975) · Zbl 0303.73062
[45] Jiang, B., The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics (2013), Springer Science & Business Media
[46] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-Squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 2, 173-189 (1989) · Zbl 0697.76100
[47] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4, 2, 153-177 (1974) · Zbl 0284.73048
[48] Zhang, C.; Acharya, A.; Puri, S., Finite element approximation of the fields of bulk and interfacial line defects, J. Mech. Phys. Solids, 114, 258-302 (2018) · Zbl 1441.74283
[49] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 8.5, J. Numer. Math. (2017) · Zbl 1375.65148
[50] Burstedde, C.; Wilcox, L. C.; Ghattas, O., : Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[51] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J.-Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018
[52] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page http://www.mcs.anl.gov/petsc, 2017.
[53] Jones, E.; Oliphant, T. E.; Peterson, P., SciPy: Open source scientific tools for Python (2001)
[54] Oliphant, T. E., NumPy: A Guide to NumPy, volume 1 (2006)
[55] McKinney, W., Data structures for statistical computing in python, (Proceedings of the 9th Python in Science Conference, volume 445 (2010), Austin, TX), 51-56
[56] McKinney, W., Pandas: a foundational Python library for data analysis and statistics, (Python for High Performance and Scientific Computing (2011)), 1-9
[57] Hunter, J. D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 3, 90-95 (2007)
[58] Waskom, M., Mwaskom/seaborn: v0.9.0 (July 2018) (2018)
[59] Hirth, J. P.; Lothe, J., Theory of Dislocations (1982), John Wiley& Sons
[60] Iyer, M.; Radhakrishnan, B.; Gavini, V., Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics, J. Mech. Phys. Solids, 76, 260-275 (2015)
[61] Mura, T., Impotent dislocation walls, Mater. Sci. Eng. A, 113, 149-152 (1989)
[62] Head, A. K.; Howison, S. D.; Ockendon, J. R.; Tighe, S. P., An equilibrium theory of dislocation continua, SIAM Rev., 35, 4, 580-609 (1993) · Zbl 0816.73050
[63] Acharya, A., Stress of a spatially uniform dislocation density field, J. Elasticity, 1-5 (2018)
[64] Bilby, B. A.; Bullough, R.; Smith, E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 231, 1185, 263-273 (1955)
[65] Eshelby, J. D., The continuum theory of lattice defects, Solid State Phys., 3, 79-144 (1956)
[66] Fox, N., A continuum theory of dislocations for single crystals, IMA J. Appl. Math., 2, 4, 285-298 (1966)
[67] Willis, J. R., Second-order effects of dislocations in anisotropic crystals, Internat. J. Engrg. Sci., 5, 2, 171-190 (1967) · Zbl 0147.43506
[68] Acharya, A.; Bassani, J. L., Lattice incompatibility and a gradient theory of crystal plasticity, J. Mech. Phys. Solids, 48, 8, 1565-1595 (2000) · Zbl 0963.74010
[69] Cermelli, P.; Gurtin, M. E., On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids, 49, 7, 1539-1568 (2001) · Zbl 0989.74013
[70] Acharya, A., A counterpoint to Cermelli and Gurtin’s criteria for choosing the ‘correct’ geometric dislocation tensor in finite plasticity, (IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media (2008), Springer), 99-105 · Zbl 1209.74017
[71] Yefimov, S.; Groma, I.; Van der Giessen, E., A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations, J. Mech. Phys. Solids, 52, 2, 279-300 (2004) · Zbl 1106.74331
[72] Bassani, J. L.; Needleman, A.; Van der Giessen, E., Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions, Int. J. Solids Struct., 38, 5, 833-853 (2001) · Zbl 1004.74006
[73] Richeton, T.; Wang, G. F.; Fressengeas, C., Continuity constraints at interfaces and their consequences on the work hardening of metal-matrix composites, J. Mech. Phys. Solids, 59, 10, 2023-2043 (2011) · Zbl 1270.74019
[74] Acharya, A.; Tartar, L., On an equation from the theory of field dislocation mechanics, Bull. Ital. Math. Union, 9, 409-444 (2011) · Zbl 1233.35186
[75] Zhang, X.; Acharya, A.; Walkington, N. J.; Bielak, J., A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations, J. Mech. Phys. Solids, 84, 145-195 (2015) · Zbl 1481.74097
[76] Varadhan, S. N.; Beaudoin, A. J.; Acharya, A.; Fressengeas, C., Dislocation transport using an explicit Galerkin/least-squares formulation, Modelling Simulation Mater. Sci. Eng., 14, 7, 1245 (2006)
[77] Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N., XSEDE: Accelerating scientific discovery, Comput. Sci. Eng., 16, 5, 62-74 (2014)
[78] Kröner, E., Continuum theory of defects, (Balian, R.; Kléman, M.; Poirier, J.-P., Physics of Defects, Les Houches Summer School Proceedings, volume 35 (1981), North-Holland: North-Holland Amsterdam), 217-315
[79] Mura, T., Continuous distribution of moving dislocations, Phil. Mag., 8, 89, 843-857 (1963)
[80] Nye, J. F., Some geometrical relations in dislocated crystals, Acta Metall., 1, 2, 153-162 (1953)
[81] Mecking, H.; Kocks, U. F., Kinetics of flow and strain-hardening, Acta Metall., 29, 11, 1865-1875 (1981)
[82] Estrin, Y.; Mecking, H., A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall., 32, 1, 57-70 (1984)
[83] Acharya, A.; Chapman, S. J., Elementary observations on the averaging of dislocation mechanics: dislocation origin of aspects of anisotropic yield and plastic spin, Procedia IUTAM, 3, 301-313 (2012)
[84] Acharya, A.; Zhang, X., From dislocation motion to an additive velocity gradient decomposition, and some simple models of dislocation dynamics, Chinese Ann. Math. Ser. B, 36, 5, 645-658 (2015) · Zbl 1329.74048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.