×

The error estimates of spectral methods for 1-dimension singularly perturbed problem. (English) Zbl 1464.65219

Summary: In this paper, we study the a posteriori error estimates of Galerkin spectral methods for the singularly perturbed problem on a unit interval. By the generalized orthogonal Jacobi polynomials, the lower bound of orthogonal coefficients, and the upper bound of the a posteriori error estimates are rigorously proposed. Our estimates consist of the truncation error of weighted \(L^2\)-projection of the right hand function and limit low frequency terms of the coefficients within Jacobi polynomial expansions. While the low frequency coefficients are together with exponentially decaying multiples, the decaying rate of high frequency coefficients of the right hand function can be used to measure the approximation accuracy of the numerical solution.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35B25 Singular perturbations in context of PDEs
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Miller, J. J.H.; ÓRiordan, E.; Shishkin, G. I., Numerical Methods for Singular Perturbation Problems. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (1996), World Scientific Publications: World Scientific Publications Singapore · Zbl 0915.65097
[2] Roos, H.-G.; Stynes, M.; Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems (1996), Springer: Springer Berlin · Zbl 0844.65075
[3] Apel, T.; Lube, G., Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem, Appl. Numer. Math., 26, 415-433 (1998) · Zbl 0933.65136
[4] Angermann, L., Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems, Computing, 55, 4, 305-323 (1995) · Zbl 0839.65114
[5] Ainsworth, M.; Babus̈ka, I., Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 36, 2, 331-353 (1999) · Zbl 0948.65114
[6] Verfürth, R., Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations, Numer. Math., 78, 479-493 (1998) · Zbl 0887.65108
[7] Gerd, K., A posteriori \(H^1\) error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes, IMA J. Numer. Anal., 25, 2, 408-428 (2001) · Zbl 1072.65141
[8] Kunert, G., Robusta posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes, Adv. Comput. Math., 15, 1-4, 237-259 (2001) · Zbl 1049.65121
[9] Demlow, A.; Kopteva, N., Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems, Numer. Math., 133, 4, 707-742 (2016) · Zbl 1376.65138
[10] Linss, T., A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems, Appl. Math., 59, 241-256 (2014) · Zbl 1340.65163
[11] Melenk, J. M.; Wihler, T. P., A Posteriori Error Analysis of Hp-FEM for Singularly Perturbed ProblemsASC Report (2014)
[12] Zolotareva, N. D.; Nikolaev, E. S., Adaptive hp-finite element method for solving boundary value problems for the stationary reactionCdiffusion equation, Comput. Math. Math. Phys., 55, 1484-1500 (2015) · Zbl 1333.65136
[13] Cheddadi, I.; Radek, F.; Prieto, M. I., Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion problems, ESAIM Math. Modelling Numer., 43, 5, 237-247 (2009) · Zbl 1190.65164
[14] Huang, J.; Cen, Z.; Xu, A., A posteriori error estimation for a singularly perturbed Volterra integro-differential equation, Numer. Algorithms (2019)
[15] Heinrichs, E. W., A new method of stabilization for singular perturbation problems with spectral methods, SIAM J. Numer. Anal., 29, 1, 107-122 (1992) · Zbl 0747.65064
[16] Liu, W. B.; Shen, J., A new efficient spectral galerkin method for singular perturbation problems, J. Sci. Comput., 11, 4, 411-437 (1996) · Zbl 0891.76066
[17] Wang, Y.; Chen, S.; Wu, X., A rational spectral collocation method for solving a class of parameterized singular perturbation problems, J. Comput. Appl. Math., 233, 10, 2652-2660 (2010) · Zbl 1183.65100
[18] Temsah, R. S., Spectral methods for some singularly perturbed third order ordinary differential equations, Numer. Algorithms, 47, 1, 63-80 (2008) · Zbl 1134.65049
[19] Liu, W. B.; Tang, T., Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems, Appl. Numer. Math., 38, 3, 315-345 (2001) · Zbl 1023.65115
[20] Zhang, J.; Chen, H. Z., Lower bounds of error estimates for singular perturbation problems with Jacobi-spectral approximations, Appl. Math. Lett., 87, 108-114 (2019) · Zbl 1425.65081
[21] Li, Z.; Wang, Q.; Lv, J., Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique, Appl. Spec., 69, 6, 721-732 (2015)
[22] Ai, Q.; Li, H. Y.; Wang, Z. Q., Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems, Appl. Numer. Math., 127, 196-210 (2018) · Zbl 1382.65424
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.