Jung, Soyeun; Yang, Zhao; Zumbrun, Kevin Stability of strong detonation waves for Majda’s model with general ignition functions. (English) Zbl 07333607 Q. Appl. Math. 79, No. 2, 357-365 (2021). MSC: 76L05 PDF BibTeX XML Cite \textit{S. Jung} et al., Q. Appl. Math. 79, No. 2, 357--365 (2021; Zbl 07333607) Full Text: DOI
Rusak, Zvi; Virk, Akashdeep Singh Transonic flows of single-phase supercritical fluids over thin airfoils. (English) Zbl 07333066 J. Fluid Mech. 915, Paper No. A61, 35 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{Z. Rusak} and \textit{A. S. Virk}, J. Fluid Mech. 915, Paper No. A61, 35 p. (2021; Zbl 07333066) Full Text: DOI
Fouda, Yahia M. Shock-contact-shock solutions of the Riemann problem for dilute granular gas. (English) Zbl 07332499 J. Fluid Mech. 915, Article ID A48, 30 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{Y. M. Fouda}, J. Fluid Mech. 915, Article ID A48, 30 p. (2021; Zbl 07332499) Full Text: DOI
Liu, Jinjing; Guo, Zhenhua Nonlinear stability of large amplitude viscous shock waves to the one-dimensional system of viscoelasticity. (English) Zbl 07332084 SIAM J. Math. Anal. 53, No. 2, 1818-1830 (2021). MSC: 35B35 35B40 35C07 35L67 76N10 76A10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{Z. Guo}, SIAM J. Math. Anal. 53, No. 2, 1818--1830 (2021; Zbl 07332084) Full Text: DOI
Matzner, C. D.; Ro, S. On linear and nonlinear acoustics in stratified variable-area ducts and atmospheres and Lighthill’s proposition. (English) Zbl 07331644 J. Fluid Mech. 915, Paper No. A32, 16 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{C. D. Matzner} and \textit{S. Ro}, J. Fluid Mech. 915, Paper No. A32, 16 p. (2021; Zbl 07331644) Full Text: DOI
Kang, Moon-Jin; Vasseur, Alexis F. Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems. (English) Zbl 07330742 Invent. Math. 224, No. 1, 55-146 (2021). MSC: 76N10 76N06 76L05 35Q30 35Q31 PDF BibTeX XML Cite \textit{M.-J. Kang} and \textit{A. F. Vasseur}, Invent. Math. 224, No. 1, 55--146 (2021; Zbl 07330742) Full Text: DOI
Herbin, R.; Latché, J.-C.; Saleh, K. Low Mach number limit of some staggered schemes for compressible barotropic flows. (English) Zbl 07328914 Math. Comput. 90, No. 329, 1039-1087 (2021). MSC: 35Q30 65N12 76M10 76M12 76N06 76L05 35D30 PDF BibTeX XML Cite \textit{R. Herbin} et al., Math. Comput. 90, No. 329, 1039--1087 (2021; Zbl 07328914) Full Text: DOI
Kang, Moon-Jin; Vasseur, Alexis F. Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system. (English) Zbl 07328119 J. Eur. Math. Soc. (JEMS) 23, No. 2, 585-638 (2021). MSC: 76L05 76N06 35Q30 PDF BibTeX XML Cite \textit{M.-J. Kang} and \textit{A. F. Vasseur}, J. Eur. Math. Soc. (JEMS) 23, No. 2, 585--638 (2021; Zbl 07328119) Full Text: DOI
Knoedler, Molly Riley; Kostas, Julianna C.; Hogan, Caroline Mary; Kerkhoff, Harper; Topaz, Chad M. An unpublished manuscript of John von Neumann on shock waves in boostered detonations: historical context and mathematical analysis. (English) Zbl 07327784 Arch. Hist. Exact Sci. 75, No. 1, 83-108 (2021). MSC: 01A60 PDF BibTeX XML Cite \textit{M. R. Knoedler} et al., Arch. Hist. Exact Sci. 75, No. 1, 83--108 (2021; Zbl 07327784) Full Text: DOI
Joy, Jilmy P.; Pathak, Sudhir N.; Rajesh, R. Shock propagation following an intense explosion: comparison between hydrodynamics and simulations. (English) Zbl 07326628 J. Stat. Phys. 182, No. 2, Paper No. 34, 23 p. (2021). MSC: 76 35 PDF BibTeX XML Cite \textit{J. P. Joy} et al., J. Stat. Phys. 182, No. 2, Paper No. 34, 23 p. (2021; Zbl 07326628) Full Text: DOI
Hu, Lijun; Feng, Sebert An accurate and shock-stable genuinely multidimensional scheme for solving the Euler equations. (English) Zbl 07323681 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105738, 25 p. (2021). MSC: 76M12 76N15 76L05 PDF BibTeX XML Cite \textit{L. Hu} and \textit{S. Feng}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105738, 25 p. (2021; Zbl 07323681) Full Text: DOI
Thanh, Mai Duc; Vinh, Duong Xuan On traveling waves in compressible Euler equations with thermal conductivity. (English) Zbl 07323127 Bull. Iran. Math. Soc. 47, No. 1, 75-89 (2021). MSC: 35C07 34D45 35L65 76L05 76N10 76T10 PDF BibTeX XML Cite \textit{M. D. Thanh} and \textit{D. X. Vinh}, Bull. Iran. Math. Soc. 47, No. 1, 75--89 (2021; Zbl 07323127) Full Text: DOI
Sasidharan, Vaisakh; Duvvuri, Subrahmanyam Large- and small-amplitude shock-wave oscillations over axisymmetric bodies in high-speed flow. (English) Zbl 07319943 J. Fluid Mech. 913, Paper No. R7, 12 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{V. Sasidharan} and \textit{S. Duvvuri}, J. Fluid Mech. 913, Paper No. R7, 12 p. (2021; Zbl 07319943) Full Text: DOI
Grube, Nathan E.; Martín, M. Pino Reynolds stress anisotropy in shock/isotropic turbulence interactions. (English) Zbl 07319919 J. Fluid Mech. 913, Paper No. A19, 26 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{N. E. Grube} and \textit{M. P. Martín}, J. Fluid Mech. 913, Paper No. A19, 26 p. (2021; Zbl 07319919) Full Text: DOI
Gubaidullin, D. A.; Tukmakov, D. A. Numerical modeling of the shock waves reflection from a firm surface in mono- and polydisperse gas suspensions. (English) Zbl 07319669 Lobachevskii J. Math. 42, No. 1, 104-109 (2021). MSC: 76L05 76T20 76M20 PDF BibTeX XML Cite \textit{D. A. Gubaidullin} and \textit{D. A. Tukmakov}, Lobachevskii J. Math. 42, No. 1, 104--109 (2021; Zbl 07319669) Full Text: DOI
Aganin, A. A.; Davletshin, A. I.; Khalitova, T. F. Expansion and collapse of bubbles in the central region of a streamer. (English) Zbl 07319659 Lobachevskii J. Math. 42, No. 1, 15-23 (2021). MSC: 76T10 76L05 76M99 PDF BibTeX XML Cite \textit{A. A. Aganin} et al., Lobachevskii J. Math. 42, No. 1, 15--23 (2021; Zbl 07319659) Full Text: DOI
Elizarova, T. G.; Shil’nikov, E. V. Numerical simulation of gas mixtures based on the quasi-gasdynamic approach as applied to the interaction of a shock wave with a gas bubble. (English. Russian original) Zbl 07319654 Comput. Math. Math. Phys. 61, No. 1, 118-128 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 1, 124-135 (2021). MSC: 76T10 76L05 76H05 76M12 PDF BibTeX XML Cite \textit{T. G. Elizarova} and \textit{E. V. Shil'nikov}, Comput. Math. Math. Phys. 61, No. 1, 118--128 (2021; Zbl 07319654); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 1, 124--135 (2021) Full Text: DOI
Zhou, Yizhou; Yong, Wen-An Boundary conditions for hyperbolic relaxation systems with characteristic boundaries of type I. (English) Zbl 07319416 J. Differ. Equations 281, 289-332 (2021). MSC: 35L50 76N20 76L05 35L65 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{W.-A. Yong}, J. Differ. Equations 281, 289--332 (2021; Zbl 07319416) Full Text: DOI
Li, Hu; Luo, Yong; Zhang, Shuhai Assessment of upwind/symmetric WENO schemes for direct numerical simulation of screech tone in supersonic jet. (English) Zbl 07316877 J. Sci. Comput. 87, No. 1, Paper No. 3, 39 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 35L65 76J20 76L05 76Q05 76N06 PDF BibTeX XML Cite \textit{H. Li} et al., J. Sci. Comput. 87, No. 1, Paper No. 3, 39 p. (2021; Zbl 07316877) Full Text: DOI
Li, Jintao; Shen, Jindou; Xu, Gang The global supersonic flow with vacuum state in a 2D convex duct. (English) Zbl 07311270 Electron Res. Arch. 29, No. 2, 2077-2099 (2021). MSC: 35Q31 35L70 35L65 35L67 76N15 76J20 35B44 76L05 PDF BibTeX XML Cite \textit{J. Li} et al., Electron Res. Arch. 29, No. 2, 2077--2099 (2021; Zbl 07311270) Full Text: DOI
Peng, Naifu; Yang, Yue; Wu, Jinxin; Xiao, Zuoli Mechanism and modelling of the secondary baroclinic vorticity in the Richtmyer-Meshkov instability. (English) Zbl 07310632 J. Fluid Mech. 911, Paper No. A56, 37 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{N. Peng} et al., J. Fluid Mech. 911, Paper No. A56, 37 p. (2021; Zbl 07310632) Full Text: DOI
Thanh, Mai Duc; Cuong, Dao Huy; Vinh, Duong Xuan The resonant cases and the Riemann problem for a model of two-phase flows. (English) Zbl 07309686 J. Math. Anal. Appl. 494, No. 1, Article ID 124578, 28 p. (2021). MSC: 76T25 76T99 76L05 35Q35 35L67 PDF BibTeX XML Cite \textit{M. D. Thanh} et al., J. Math. Anal. Appl. 494, No. 1, Article ID 124578, 28 p. (2021; Zbl 07309686) Full Text: DOI
Sun, Wenhua; Liu, Yujin Explicit solution for a class of coupled hyperbolic systems of conservation laws. (English) Zbl 07305512 Appl. Anal. 100, No. 3, 630-641 (2021). MSC: 35L65 35L60 35L45 35L67 76N10 PDF BibTeX XML Cite \textit{W. Sun} and \textit{Y. Liu}, Appl. Anal. 100, No. 3, 630--641 (2021; Zbl 07305512) Full Text: DOI
Abreu, E.; Matos, V.; Pérez, J.; Rodríguez-Bermúdez, P. A class of Lagrangian-Eulerian shock-capturing schemes for first-order hyperbolic problems with forcing terms. (English) Zbl 07301292 J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021). MSC: 65M06 65M12 35L65 35L45 76S05 76T06 76N10 76L05 76B15 PDF BibTeX XML Cite \textit{E. Abreu} et al., J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021; Zbl 07301292) Full Text: DOI
Ruggeri, Tommaso; Xiao, Qinghua; Zhao, Huijiang Nonlinear hyperbolic waves in relativistic gases of massive particles with Synge energy. (English) Zbl 07300729 Arch. Ration. Mech. Anal. 239, No. 2, 1061-1109 (2021). MSC: 76Y05 76L05 76P05 PDF BibTeX XML Cite \textit{T. Ruggeri} et al., Arch. Ration. Mech. Anal. 239, No. 2, 1061--1109 (2021; Zbl 07300729) Full Text: DOI
Zhang, Yu; Pang, Yicheng Concentration and cavitation in the vanishing pressure limit of solutions to a simplified isentropic relativistic Euler equations. (English) Zbl 07299344 J. Math. Fluid Mech. 23, No. 1, Paper No. 8, 19 p. (2021). MSC: 35Q31 35L65 35L67 76N10 76N15 76L05 76P05 76Y05 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Y. Pang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 8, 19 p. (2021; Zbl 07299344) Full Text: DOI
Gutiérrez-Hernández, Ulisses J.; De Colle, Fabio; Ohl, Claus-Dieter; Quinto-Su, Pedro A. Transient time-delay focusing of shock waves in thin liquids. (English) Zbl 07298977 J. Fluid Mech. 910, Paper No. A27, 14 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{U. J. Gutiérrez-Hernández} et al., J. Fluid Mech. 910, Paper No. A27, 14 p. (2021; Zbl 07298977) Full Text: DOI
Janardhanraj, S.; Abhishek, K.; Jagadeesh, G. Insights into the shockwave attenuation in miniature shock tubes. (English) Zbl 07298869 J. Fluid Mech. 910, Paper No. A3, 31 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{S. Janardhanraj} et al., J. Fluid Mech. 910, Paper No. A3, 31 p. (2021; Zbl 07298869) Full Text: DOI
Prunty, Seán Introduction to simple shock waves in air. With numerical solutions using artificial viscosity. 2nd expanded edition. (English) Zbl 07296435 Shock Wave and High Pressure Phenomena. Cham: Springer (ISBN 978-3-030-63605-0/hbk; 978-3-030-63606-7/ebook). xv, 344 p. (2021). MSC: 76-02 76L05 PDF BibTeX XML Cite \textit{S. Prunty}, Introduction to simple shock waves in air. With numerical solutions using artificial viscosity. 2nd expanded edition. Cham: Springer (2021; Zbl 07296435) Full Text: DOI
Kovyrkina, O. A.; Ostapenko, V. V. On accuracy of MUSCL type scheme when calculating discontinuous solutions. (Russian. English summary) Zbl 07292300 Mat. Model. 33, No. 1, 105-121 (2021). MSC: 76M20 76L05 65M12 PDF BibTeX XML Cite \textit{O. A. Kovyrkina} and \textit{V. V. Ostapenko}, Mat. Model. 33, No. 1, 105--121 (2021; Zbl 07292300) Full Text: DOI MNR
Ding, Min Non-relativistic limits of contact discontinuities to 1-d piston problem for the relativistic full Euler system. (English) Zbl 1455.35183 J. Differ. Equations 274, 510-542 (2021). MSC: 35Q31 76N10 76L05 76Y05 35B40 PDF BibTeX XML Cite \textit{M. Ding}, J. Differ. Equations 274, 510--542 (2021; Zbl 1455.35183) Full Text: DOI
Krupa, Sam G. Finite time stability for the Riemann problem with extremal shocks for a large class of hyperbolic systems. (English) Zbl 1455.35146 J. Differ. Equations 273, 122-171 (2021). MSC: 35L65 76N15 35L45 35A02 35B35 35D30 35L67 35Q31 76L05 76N10 PDF BibTeX XML Cite \textit{S. G. Krupa}, J. Differ. Equations 273, 122--171 (2021; Zbl 1455.35146) Full Text: DOI
Brykov, N. A.; Emelyanov, V. N.; Karpenko, A. G.; Volkov, K. N. Flows of real gas in nozzles with unsteady local energy supply. (English) Zbl 07288740 Comput. Math. Appl. 81, 702-724 (2021). MSC: 76N15 76L05 76M12 80A19 PDF BibTeX XML Cite \textit{N. A. Brykov} et al., Comput. Math. Appl. 81, 702--724 (2021; Zbl 07288740) Full Text: DOI
Hong, Hakho; Choe, Chunhyok Asymptotic behavior of solutions for the 1-D isentropic Navier-Stokes-Korteweg equations with free boundary. (English) Zbl 1455.35173 Nonlinear Anal., Real World Appl. 58, Article ID 103210, 27 p. (2021). MSC: 35Q30 76N15 76N06 76L05 35A02 35D35 35B40 35R35 PDF BibTeX XML Cite \textit{H. Hong} and \textit{C. Choe}, Nonlinear Anal., Real World Appl. 58, Article ID 103210, 27 p. (2021; Zbl 1455.35173) Full Text: DOI
Shen, Chun The multiplication of distributions in the one-dimensional Eulerian droplet model. (English) Zbl 1454.35270 Appl. Math. Lett. 112, Article ID 106796, 8 p. (2021). MSC: 35Q31 76L05 76T10 76N10 35L67 PDF BibTeX XML Cite \textit{C. Shen}, Appl. Math. Lett. 112, Article ID 106796, 8 p. (2021; Zbl 1454.35270) Full Text: DOI
Fan, Yongqiang; Guo, Lihui; Fan, Xingya; You, Shouke One dimensional piston problem for compressible Euler equations of generalized Chaplygin gas. (English) Zbl 1454.35266 Appl. Math. Lett. 112, Article ID 106744, 8 p. (2021). MSC: 35Q31 76B15 76L05 PDF BibTeX XML Cite \textit{Y. Fan} et al., Appl. Math. Lett. 112, Article ID 106744, 8 p. (2021; Zbl 1454.35266) Full Text: DOI
Hu, Lijun; Feng, Sebert A robust and contact preserving flux splitting scheme for compressible flows. (English) Zbl 1452.65190 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105502, 23 p. (2021). MSC: 65M08 65M06 76N15 76K05 76L05 PDF BibTeX XML Cite \textit{L. Hu} and \textit{S. Feng}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105502, 23 p. (2021; Zbl 1452.65190) Full Text: DOI
Lattanzio, Corrado; Zhelyazov, Delyan Traveling waves for quantum hydrodynamics with nonlinear viscosity. (English) Zbl 1454.76112 J. Math. Anal. Appl. 493, No. 1, Article ID 124503, 17 p. (2021). MSC: 76Y05 76L05 PDF BibTeX XML Cite \textit{C. Lattanzio} and \textit{D. Zhelyazov}, J. Math. Anal. Appl. 493, No. 1, Article ID 124503, 17 p. (2021; Zbl 1454.76112) Full Text: DOI
Straughan, B. Jordan-Cattaneo waves: analogues of compressible flow. (English) Zbl 07328376 Wave Motion 98, Article ID 102637, 13 p. (2020). MSC: 35 76 PDF BibTeX XML Cite \textit{B. Straughan}, Wave Motion 98, Article ID 102637, 13 p. (2020; Zbl 07328376) Full Text: DOI
Fosu, Gabriel O.; Akweittey, Emmanuel; Opong, Joseph M.; Otoo, Micheal E. Vehicular traffic models for speed-density-flow relationship. (English) Zbl 07326392 J. Math. Model. 8, No. 3, 241-255 (2020). MSC: 76L05 53A17 76M20 PDF BibTeX XML Cite \textit{G. O. Fosu} et al., J. Math. Model. 8, No. 3, 241--255 (2020; Zbl 07326392) Full Text: DOI
Lattanzio, Corrado; Marcati, Pierangelo; Zhelyazov, Delyan Numerical investigations of dispersive shocks and spectral analysis for linearized quantum hydrodynamics. (English) Zbl 07321673 Appl. Math. Comput. 385, Article ID 125450, 12 p. (2020). MSC: 76Y05 35Q35 PDF BibTeX XML Cite \textit{C. Lattanzio} et al., Appl. Math. Comput. 385, Article ID 125450, 12 p. (2020; Zbl 07321673) Full Text: DOI
Sarrico, C. O. R.; Paiva, A. Distributions as initial values in a triangular hyperbolic system of conservation laws. (English) Zbl 07316358 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 2757-2775 (2020). MSC: 46F10 35D99 35L67 PDF BibTeX XML Cite \textit{C. O. R. Sarrico} and \textit{A. Paiva}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 2757--2775 (2020; Zbl 07316358) Full Text: DOI
Bae, Myoungjean; Xiang, Wei A note on 2-D detached shocks of steady Euler system. (English) Zbl 07315457 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 124-135 (2020). MSC: 35Q31 35A01 35J25 35J62 35M10 35Q31 35R35 76H05 76L05 76N10 PDF BibTeX XML Cite \textit{M. Bae} and \textit{W. Xiang}, AIMS Ser. Appl. Math. 10, 124--135 (2020; Zbl 07315457)
Chen, Gui-Qiang G.; Feldman, Mikhail; Xiang, Wei Uniqueness and stability for the shock reflection-diffraction problem for potential flow. (English) Zbl 07315450 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 2-24 (2020). MSC: 35L67 35M12 35C06 35R35 35L65 35L70 35J70 76H05 35B45 35B35 35B40 35B36 35B38 35L20 35J67 76N10 76L05 76J20 76N20 76G25 PDF BibTeX XML Cite \textit{G.-Q. G. Chen} et al., AIMS Ser. Appl. Math. 10, 2--24 (2020; Zbl 07315450)
Alekseev, I.; Kustova, E. Numerical simulations of shock waves in viscous carbon dioxide flows using finite volume method. (English. Russian original) Zbl 07311067 Vestn. St. Petersbg. Univ., Math. 53, No. 3, 344-350 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 3, 500-510 (2020). MSC: 76M12 76L05 76N06 PDF BibTeX XML Cite \textit{I. Alekseev} and \textit{E. Kustova}, Vestn. St. Petersbg. Univ., Math. 53, No. 3, 344--350 (2020; Zbl 07311067); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 3, 500--510 (2020) Full Text: DOI
Bogatko, V. I.; Potekhina, E. A. To the problem of modeling gas flows behind the strong shock wave front using an effective adiabatic index. (English. Russian original) Zbl 07310923 Vestn. St. Petersbg. Univ., Math. 53, No. 1, 77-81 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 1, 104-111 (2020). MSC: 76L05 76N15 PDF BibTeX XML Cite \textit{V. I. Bogatko} and \textit{E. A. Potekhina}, Vestn. St. Petersbg. Univ., Math. 53, No. 1, 77--81 (2020; Zbl 07310923); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 1, 104--111 (2020) Full Text: DOI
Lychagin, V. V.; Roop, M. D. Shock waves in Euler flows of gases. (English) Zbl 07309046 Lobachevskii J. Math. 41, No. 12, 2466-2472 (2020). MSC: 35Q31 76L05 76N15 35L65 PDF BibTeX XML Cite \textit{V. V. Lychagin} and \textit{M. D. Roop}, Lobachevskii J. Math. 41, No. 12, 2466--2472 (2020; Zbl 07309046) Full Text: DOI
Moiseev, E. I.; Shifrin, E. G. Unique solvability in the Lavrent’ev-Bitsadze model for two problems of weakly supersonic symmetric flow with detached shock wave past a wedge. (English. Russian original) Zbl 07304918 Differ. Equ. 56, No. 12, 1587-1593 (2020); translation from Differ. Uravn. 56, No. 12, 1634-1640 (2020). MSC: 76J20 76N10 76L05 35Q35 PDF BibTeX XML Cite \textit{E. I. Moiseev} and \textit{E. G. Shifrin}, Differ. Equ. 56, No. 12, 1587--1593 (2020; Zbl 07304918); translation from Differ. Uravn. 56, No. 12, 1634--1640 (2020) Full Text: DOI
Wang, Bao-Shan; Don, Wai Sun; Garg, Naveen K.; Kurganov, Alexander Fifth-order a-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux. (English) Zbl 07303433 SIAM J. Sci. Comput. 42, No. 6, A3932-A3956 (2020). MSC: 65M06 76M20 65M08 76M12 76N15 76L05 35L65 35Q31 PDF BibTeX XML Cite \textit{B.-S. Wang} et al., SIAM J. Sci. Comput. 42, No. 6, A3932--A3956 (2020; Zbl 07303433) Full Text: DOI
Zhu, Jun; Shu, Chi-Wang A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. (English) Zbl 1453.65266 J. Comput. Phys. 406, Article ID 109212, 14 p. (2020). MSC: 65M08 76M12 35L65 76L05 76H05 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{C.-W. Shu}, J. Comput. Phys. 406, Article ID 109212, 14 p. (2020; Zbl 1453.65266) Full Text: DOI
Das, Pratik; Udaykumar, H. S. A sharp-interface method for the simulation of shock-induced vaporization of droplets. (English) Zbl 1453.76126 J. Comput. Phys. 405, Article ID 109005, 38 p. (2020). MSC: 76M20 76T10 76L05 80A22 PDF BibTeX XML Cite \textit{P. Das} and \textit{H. S. Udaykumar}, J. Comput. Phys. 405, Article ID 109005, 38 p. (2020; Zbl 1453.76126) Full Text: DOI
Uilhoorn, F. E. Numerical issues in gas flow dynamics with hydraulic shocks using high order finite volume WENO schemes. (English) Zbl 1453.76112 J. Comput. Phys. 404, Article ID 109137, 26 p. (2020). MSC: 76M12 65M08 76N15 76L05 PDF BibTeX XML Cite \textit{F. E. Uilhoorn}, J. Comput. Phys. 404, Article ID 109137, 26 p. (2020; Zbl 1453.76112) Full Text: DOI
Giuliani, Andrew; Krivodonova, Lilia A moment limiter for the discontinuous Galerkin method on unstructured tetrahedral meshes. (English) Zbl 1453.65318 J. Comput. Phys. 404, Article ID 109106, 20 p. (2020). MSC: 65M60 65M50 76M10 35L65 76L05 PDF BibTeX XML Cite \textit{A. Giuliani} and \textit{L. Krivodonova}, J. Comput. Phys. 404, Article ID 109106, 20 p. (2020; Zbl 1453.65318) Full Text: DOI
Zhu, Jun; Qiu, Jianxian; Shu, Chi-Wang High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. (English) Zbl 1453.65351 J. Comput. Phys. 404, Article ID 109105, 18 p. (2020). MSC: 65M60 35L65 76M10 76L05 PDF BibTeX XML Cite \textit{J. Zhu} et al., J. Comput. Phys. 404, Article ID 109105, 18 p. (2020; Zbl 1453.65351) Full Text: DOI
Balsara, Dinshaw S.; Garain, Sudip; Florinski, Vladimir; Boscheri, Walter An efficient class of WENO schemes with adaptive order for unstructured meshes. (English) Zbl 1453.65208 J. Comput. Phys. 404, Article ID 109062, 32 p. (2020). MSC: 65M06 76M20 76L05 35L65 PDF BibTeX XML Cite \textit{D. S. Balsara} et al., J. Comput. Phys. 404, Article ID 109062, 32 p. (2020; Zbl 1453.65208) Full Text: DOI
Cheng, Jian; Zhang, Fan; Liu, Tiegang A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows. (English) Zbl 1453.76063 J. Comput. Phys. 403, Article ID 109059, 29 p. (2020). MSC: 76M10 65M60 76T17 76T10 76L05 PDF BibTeX XML Cite \textit{J. Cheng} et al., J. Comput. Phys. 403, Article ID 109059, 29 p. (2020; Zbl 1453.76063) Full Text: DOI
Hadadian Nejad Yousefi, Mohsen; Ghoreishi Najafabadi, Seyed Hossein; Tohidi, Emran A new WENO based Chebyshev spectral volume method for solving one- and two-dimensional conservation laws. (English) Zbl 1453.76151 J. Comput. Phys. 403, Article ID 109055, 31 p. (2020). MSC: 76M22 76M12 35L65 76L05 PDF BibTeX XML Cite \textit{M. Hadadian Nejad Yousefi} et al., J. Comput. Phys. 403, Article ID 109055, 31 p. (2020; Zbl 1453.76151) Full Text: DOI
Kozak, Y.; Dammati, S. S.; Bravo, L. G.; Hamlington, P. E.; Poludnenko, A. Y. WENO interpolation for Lagrangian particles in highly compressible flow regimes. (English) Zbl 1453.76165 J. Comput. Phys. 402, Article ID 109054, 24 p. (2020). MSC: 76M28 76V05 76N15 76L05 PDF BibTeX XML Cite \textit{Y. Kozak} et al., J. Comput. Phys. 402, Article ID 109054, 24 p. (2020; Zbl 1453.76165) Full Text: DOI
Latini, Marco; Schilling, Oleg A comparison of two- and three-dimensional single-mode reshocked Richtmyer-Meshkov instability growth. (English) Zbl 1453.76133 Physica D 401, Article ID 132201, 24 p. (2020). MSC: 76M20 76T17 76L05 PDF BibTeX XML Cite \textit{M. Latini} and \textit{O. Schilling}, Physica D 401, Article ID 132201, 24 p. (2020; Zbl 1453.76133) Full Text: DOI
Lattanzio, Corrado; Marcati, Pierangelo; Zhelyazov, Delyan Dispersive shocks in quantum hydrodynamics with viscosity. (English) Zbl 1453.76233 Physica D 402, Article ID 132222, 13 p. (2020). MSC: 76Y05 76L05 35C07 35B35 PDF BibTeX XML Cite \textit{C. Lattanzio} et al., Physica D 402, Article ID 132222, 13 p. (2020; Zbl 1453.76233) Full Text: DOI
Fleischmann, Nico; Adami, Stefan; Hu, Xiangyu Y.; Adams, Nikolaus A. A low dissipation method to cure the grid-aligned shock instability. (English) Zbl 1453.76092 J. Comput. Phys. 401, Article ID 109004, 16 p. (2020). MSC: 76M12 76L05 65M08 76N15 PDF BibTeX XML Cite \textit{N. Fleischmann} et al., J. Comput. Phys. 401, Article ID 109004, 16 p. (2020; Zbl 1453.76092) Full Text: DOI
Sheng, Shouqiong; Shao, Zhiqiang The limits of Riemann solutions to Euler equations of compressible fluid flow with a source term. (English) Zbl 1455.76075 J. Eng. Math. 125, 1-22 (2020). MSC: 76L05 76N10 76M20 35Q31 PDF BibTeX XML Cite \textit{S. Sheng} and \textit{Z. Shao}, J. Eng. Math. 125, 1--22 (2020; Zbl 1455.76075) Full Text: DOI
Fu, Lin; Karp, Michael; Bose, Sanjeeb T.; Moin, Parviz; Urzay, Javier Shock-induced heating and transition to turbulence in a hypersonic boundary layer. (English) Zbl 07298362 J. Fluid Mech. 909, Paper No. A8, 49 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{L. Fu} et al., J. Fluid Mech. 909, Paper No. A8, 49 p. (2020; Zbl 07298362) Full Text: DOI
Wu, Wangxia; Liu, Qingquan; Wang, Bing Curved surface effect on high-speed droplet impingement. (English) Zbl 07298361 J. Fluid Mech. 909, Paper No. A7, 30 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{W. Wu} et al., J. Fluid Mech. 909, Paper No. A7, 30 p. (2020; Zbl 07298361) Full Text: DOI
Zhang, Enlai; Li, Zhufei; Ji, Junze; Si, Dongxian; Yang, Jiming Converging near-elliptic shock waves. (English) Zbl 07298357 J. Fluid Mech. 909, Paper No. A2, 15 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{E. Zhang} et al., J. Fluid Mech. 909, Paper No. A2, 15 p. (2020; Zbl 07298357) Full Text: DOI
Leonard, Michael D.; Narayanaswamy, V. Investigation of shock dynamics in an axisymmetric inlet/isolator with attached boundary layers. (English) Zbl 07298346 J. Fluid Mech. 908, Paper No. A42, 27 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{M. D. Leonard} and \textit{V. Narayanaswamy}, J. Fluid Mech. 908, Paper No. A42, 27 p. (2020; Zbl 07298346) Full Text: DOI
Groom, Michael; Thornber, B. Reynolds number dependence of turbulence induced by the Richtmyer-Meshkov instability using direct numerical simulations. (English) Zbl 07298199 J. Fluid Mech. 908, Paper No. A31, 36 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{M. Groom} and \textit{B. Thornber}, J. Fluid Mech. 908, Paper No. A31, 36 p. (2020; Zbl 07298199) Full Text: DOI
Raimbaud, Quentin; Monloubou, Martin; Kerampran, Steven; Cantat, Isabelle Impact of a shock wave on a heterogeneous foam film. (English) Zbl 07298196 J. Fluid Mech. 908, Paper No. A27, 22 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{Q. Raimbaud} et al., J. Fluid Mech. 908, Paper No. A27, 22 p. (2020; Zbl 07298196) Full Text: DOI
Lau-Chapdelaine, S. S.-M.; Xiao, Q.; Radulescu, M. I. Viscous jetting and Mach stem bifurcation in shock reflections: experiments and simulations. (English) Zbl 07298111 J. Fluid Mech. 908, Paper No. A18, 29 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{S. S. M. Lau-Chapdelaine} et al., J. Fluid Mech. 908, Paper No. A18, 29 p. (2020; Zbl 07298111) Full Text: DOI
Wu, Jinxin; Liu, Han; Xiao, Zuoli Refined modelling of the single-mode cylindrical Richtmyer-Meshkov instability. (English) Zbl 07298102 J. Fluid Mech. 908, Paper No. A9, 18 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{J. Wu} et al., J. Fluid Mech. 908, Paper No. A9, 18 p. (2020; Zbl 07298102) Full Text: DOI
Chang, Eric Won Keun; Chan, Wilson Y. K.; Mcintyre, Timothy J.; Veeraragavan, Ananthanarayanan Hypersonic shock impingement on a heated flat plate at Mach 7 flight enthalpy. (English) Zbl 07298097 J. Fluid Mech. 908, Paper No. R1, 13 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{E. W. K. Chang} et al., J. Fluid Mech. 908, Paper No. R1, 13 p. (2020; Zbl 07298097) Full Text: DOI
Li, Nan; Chang, Juntao; Xu, Kejing; Yu, Daren; Bao, Wen Instability of shock train behaviour with incident shocks. (English) Zbl 07297769 J. Fluid Mech. 907, Paper No. A40, 27 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{N. Li} et al., J. Fluid Mech. 907, Paper No. A40, 27 p. (2020; Zbl 07297769) Full Text: DOI
Shen, N.; Pullin, D. I.; Samtaney, R.; Wheatley, V. Evolution of a shock generated by an impulsively accelerated, sinusoidal piston. (English) Zbl 07297765 J. Fluid Mech. 907, Paper No. A35, 41 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{N. Shen} et al., J. Fluid Mech. 907, Paper No. A35, 41 p. (2020; Zbl 07297765) Full Text: DOI
Hu, Lijun; Wu, Shifeng; Zhao, Kunlei A new shock stable convection-pressure flux splitting scheme. (Chinese. English summary) Zbl 07295035 Chin. J. Comput. Mech. 37, No. 4, 496-503 (2020). MSC: 76L05 76M99 PDF BibTeX XML Cite \textit{L. Hu} et al., Chin. J. Comput. Mech. 37, No. 4, 496--503 (2020; Zbl 07295035) Full Text: DOI
Bakhvalov, P. A.; Kozubskaya, T. K. On using artificial viscosity in edge-based schemes on unstructured meshes. (Russian. English summary) Zbl 07288946 Mat. Model. 32, No. 12, 114-128 (2020). MSC: 76M12 76N15 76L05 PDF BibTeX XML Cite \textit{P. A. Bakhvalov} and \textit{T. K. Kozubskaya}, Mat. Model. 32, No. 12, 114--128 (2020; Zbl 07288946) Full Text: DOI MNR
Bragin, M. D. Entropy stability of bicompact schemes in gas dynamics problems. (Russian. English summary) Zbl 1455.76106 Mat. Model. 32, No. 11, 114-128 (2020). MSC: 76M12 76L05 76N15 65M12 PDF BibTeX XML Cite \textit{M. D. Bragin}, Mat. Model. 32, No. 11, 114--128 (2020; Zbl 1455.76106) Full Text: DOI MNR
Zhalnin, R. V.; Masyagin, V. F.; Peskova, E. E.; Tishkin, V. F. Modeling of Richtmyer-Meshkov instability development using the discontinuous Galerkin method and local-adaptive meshes. (Russian. English summary) Zbl 07288919 Mat. Model. 32, No. 10, 34-46 (2020). MSC: 76E17 76L05 76M99 76M20 76F25 PDF BibTeX XML Cite \textit{R. V. Zhalnin} et al., Mat. Model. 32, No. 10, 34--46 (2020; Zbl 07288919) Full Text: DOI MNR
Borisov, V. E.; Rykov, Yu. G. Simulation of multicomponent gas flows using double-flux method. (Russian. English summary) Zbl 07288917 Mat. Model. 32, No. 10, 3-20 (2020). MSC: 76M12 76N15 76L05 76T30 PDF BibTeX XML Cite \textit{V. E. Borisov} and \textit{Yu. G. Rykov}, Mat. Model. 32, No. 10, 3--20 (2020; Zbl 07288917) Full Text: DOI MNR
Bolotnova, R. Kh.; Gainullina, E. F. Influence of the dissipative properties of aqueous foam on the dynamics of shock waves. (English. Russian original) Zbl 1451.76129 J. Appl. Mech. Tech. Phys. 61, No. 4, 510-516 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 4, 15-21 (2020). MSC: 76T10 76L05 PDF BibTeX XML Cite \textit{R. Kh. Bolotnova} and \textit{E. F. Gainullina}, J. Appl. Mech. Tech. Phys. 61, No. 4, 510--516 (2020; Zbl 1451.76129); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 4, 15--21 (2020) Full Text: DOI
Cheng, Hongjun; Yang, Hanchun Riemann problem for the 2D scalar conservation law involving linear fluxes with discontinuous coefficients. (English) Zbl 1454.35248 J. Math. Phys. 61, No. 11, 111504, 20 p. (2020). MSC: 35Q15 35C06 35L67 76L05 35R05 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{H. Yang}, J. Math. Phys. 61, No. 11, 111504, 20 p. (2020; Zbl 1454.35248) Full Text: DOI
Li, Yeping; Zhu, Peicheng Zero-viscosity-capillarity limit toward rarefaction wave with vacuum for the Navier-Stokes-Korteweg equations of compressible fluids. (English) Zbl 1455.76162 J. Math. Phys. 61, No. 11, 111501, 20 p. (2020). MSC: 76N10 76N06 76L05 35Q30 35Q53 35L67 PDF BibTeX XML Cite \textit{Y. Li} and \textit{P. Zhu}, J. Math. Phys. 61, No. 11, 111501, 20 p. (2020; Zbl 1455.76162) Full Text: DOI
Shen, Chun The singular limits of solutions to the Riemann problem for the liquid-gas two-phase isentropic flow model. (English) Zbl 1454.76054 J. Math. Phys. 61, No. 8, 081502, 20 p. (2020). MSC: 76L05 76T10 35L67 PDF BibTeX XML Cite \textit{C. Shen}, J. Math. Phys. 61, No. 8, 081502, 20 p. (2020; Zbl 1454.76054) Full Text: DOI
Del Rey Fernández, David C.; Carpenter, Mark H.; Dalcin, Lisandro; Zampini, Stefano; Parsani, Matteo Entropy stable \(h/p\)-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier-Stokes equations. (English) Zbl 1454.65123 SN Partial Differ. Equ. Appl. 1, No. 2, Paper No. 9, 54 p. (2020). MSC: 65M70 65D05 65L06 65M12 65P40 65Z05 76N06 76L05 76F06 35Q30 PDF BibTeX XML Cite \textit{D. C. Del Rey Fernández} et al., SN Partial Differ. Equ. Appl. 1, No. 2, Paper No. 9, 54 p. (2020; Zbl 1454.65123) Full Text: DOI
Kitamura, Keiichi Advancement of shock capturing computational fluid dynamics methods. Numerical flux functions in finite volume method. (English) Zbl 1454.76001 Singapore: Springer (ISBN 978-981-15-9010-8/hbk; 978-981-15-9011-5/ebook). xi, 136 p. (2020). MSC: 76-02 76L05 PDF BibTeX XML Cite \textit{K. Kitamura}, Advancement of shock capturing computational fluid dynamics methods. Numerical flux functions in finite volume method. Singapore: Springer (2020; Zbl 1454.76001) Full Text: DOI
Bezrodnykh, S. I.; Vlasov, V. I. Asymptotics of the Riemann-Hilbert problem for a magnetic reconnection model in plasma. (English. Russian original) Zbl 1455.35259 Comput. Math. Math. Phys. 60, No. 11, 1839-1854 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1898-1914 (2020). MSC: 35Q85 35Q15 76X05 76W05 76L05 35C20 85A30 PDF BibTeX XML Cite \textit{S. I. Bezrodnykh} and \textit{V. I. Vlasov}, Comput. Math. Math. Phys. 60, No. 11, 1839--1854 (2020; Zbl 1455.35259); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1898--1914 (2020) Full Text: DOI
Grava, Tamara; Minakov, Alexander On the long-time asymptotic behavior of the modified Korteweg-de Vries equation with step-like initial data. (English) Zbl 07282663 SIAM J. Math. Anal. 52, No. 6, 5892-5993 (2020). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q15 35Q51 35Q53 35B40 35C07 PDF BibTeX XML Cite \textit{T. Grava} and \textit{A. Minakov}, SIAM J. Math. Anal. 52, No. 6, 5892--5993 (2020; Zbl 07282663) Full Text: DOI
Abreu, Eduardo; Díaz, Ciro; Galvis, Juan; Pérez, John On the conservation properties in multiple scale coupling and simulation for Darcy flow with hyperbolic-transport in complex flows. (English) Zbl 1454.35271 Multiscale Model. Simul. 18, No. 4, 1375-1408 (2020). MSC: 35Q35 35J20 35L67 76M12 76M10 76L05 76S05 PDF BibTeX XML Cite \textit{E. Abreu} et al., Multiscale Model. Simul. 18, No. 4, 1375--1408 (2020; Zbl 1454.35271) Full Text: DOI
Naeem, Ismat; Ali, S.; Irfan, M.; Mirza, Arshad M. Ion-acoustic shocklets in F-region of ionosphere with non-Maxwellian electrons. (English) Zbl 1448.82039 Phys. Lett., A 384, No. 24, Article ID 126568, 8 p. (2020). MSC: 82D10 76L05 76X05 PDF BibTeX XML Cite \textit{I. Naeem} et al., Phys. Lett., A 384, No. 24, Article ID 126568, 8 p. (2020; Zbl 1448.82039) Full Text: DOI
Aggarwal, Aekta; Sahoo, Manas Ranjan; Sen, Abhrojyoti; Vaidya, Ganesh Solutions with concentration for conservation laws with discontinuous flux and its applications to numerical schemes for hyperbolic systems. (English) Zbl 1452.35095 Stud. Appl. Math. 145, No. 2, 247-290 (2020). MSC: 35L65 35L67 35A35 35R11 65M12 PDF BibTeX XML Cite \textit{A. Aggarwal} et al., Stud. Appl. Math. 145, No. 2, 247--290 (2020; Zbl 1452.35095) Full Text: DOI
Jalali Khouzani, Hamed; Kamali Moghadam, Ramin A novel approach of unsteady adjoint lattice Boltzmann method based on circular function scheme. (English) Zbl 1454.76069 J. Sci. Comput. 85, No. 2, Paper No. 38, 28 p. (2020). MSC: 76N25 76M21 76M28 76M12 76L05 PDF BibTeX XML Cite \textit{H. Jalali Khouzani} and \textit{R. Kamali Moghadam}, J. Sci. Comput. 85, No. 2, Paper No. 38, 28 p. (2020; Zbl 1454.76069) Full Text: DOI
Xiang, Shuyang; Cao, Yangyang Global existence for a one-dimensional non-relativistic Euler model with relaxation. (English) Zbl 1452.35140 Port. Math. (N.S.) 77, No. 1, 45-71 (2020). MSC: 35Q31 35L60 65M08 76N10 35D30 76L05 35A01 PDF BibTeX XML Cite \textit{S. Xiang} and \textit{Y. Cao}, Port. Math. (N.S.) 77, No. 1, 45--71 (2020; Zbl 1452.35140) Full Text: DOI
Paiva, Adelino New \(\delta\)-shock waves in the \(p\)-system: a distributional product approach. (English) Zbl 1446.74150 Math. Mech. Solids 25, No. 3, 619-629 (2020). MSC: 74J40 74F05 PDF BibTeX XML Cite \textit{A. Paiva}, Math. Mech. Solids 25, No. 3, 619--629 (2020; Zbl 1446.74150) Full Text: DOI
Liu, Xin A well-balanced asymptotic preserving scheme for the two-dimensional shallow water equations over irregular bottom topography. (English) Zbl 1451.76077 SIAM J. Sci. Comput. 42, No. 5, B1136-B1172 (2020). MSC: 76M12 76M20 76B15 65M08 65M06 PDF BibTeX XML Cite \textit{X. Liu}, SIAM J. Sci. Comput. 42, No. 5, B1136--B1172 (2020; Zbl 1451.76077) Full Text: DOI
Sahoo, Sueet Millon; Sekhar, T. Raja; Sekhar, G. P. Raja Optimal classification, exact solutions, and wave interactions of Euler system with large friction. (English) Zbl 1454.35269 Math. Methods Appl. Sci. 43, No. 9, 5744-5757 (2020). MSC: 35Q31 35A30 35C05 35L60 76D33 76L05 76M60 PDF BibTeX XML Cite \textit{S. M. Sahoo} et al., Math. Methods Appl. Sci. 43, No. 9, 5744--5757 (2020; Zbl 1454.35269) Full Text: DOI
Gai, G.; Thomine, O.; Kudriakov, S.; Hadjadj, Abdellah A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves. (English) Zbl 07271159 J. Fluid Mech. 905, Paper No. A24, 20 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{G. Gai} et al., J. Fluid Mech. 905, Paper No. A24, 20 p. (2020; Zbl 07271159) Full Text: DOI
Gao, Junlei; Liu, Li; Yuan, Hairong On stability of transonic shocks for stationary Rayleigh flows in two-dimensional ducts. (English) Zbl 1453.35142 SIAM J. Math. Anal. 52, No. 5, 5287-5337 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q31 35F60 35M32 35J56 76H05 76L05 76N10 35B35 PDF BibTeX XML Cite \textit{J. Gao} et al., SIAM J. Math. Anal. 52, No. 5, 5287--5337 (2020; Zbl 1453.35142) Full Text: DOI
Gubaidullin, A. A.; Pyatkova, A. V. The effect of nonlinearity on acoustic streaming in cylindrical cavities of different diameters. (English) Zbl 1452.76218 Lobachevskii J. Math. 41, No. 7, 1196-1201 (2020). MSC: 76Q05 76L05 76M99 PDF BibTeX XML Cite \textit{A. A. Gubaidullin} and \textit{A. V. Pyatkova}, Lobachevskii J. Math. 41, No. 7, 1196--1201 (2020; Zbl 1452.76218) Full Text: DOI
Aganin, A. A.; Khalitova, T. F. Small non-sphericity of a convergent shock wave in a collapsing cavitation bubble in tetradecane. (English) Zbl 1453.76060 Lobachevskii J. Math. 41, No. 7, 1137-1142 (2020). MSC: 76L05 76T10 80A19 PDF BibTeX XML Cite \textit{A. A. Aganin} and \textit{T. F. Khalitova}, Lobachevskii J. Math. 41, No. 7, 1137--1142 (2020; Zbl 1453.76060) Full Text: DOI
Mitra, K.; Köppl, T.; Pop, I. S.; van Duijn, C. J.; Helmig, R. Fronts in two-phase porous media flow problems: the effects of hysteresis and dynamic capillarity. (English) Zbl 1454.76094 Stud. Appl. Math. 144, No. 4, 449-492 (2020). MSC: 76S05 76T30 76L05 PDF BibTeX XML Cite \textit{K. Mitra} et al., Stud. Appl. Math. 144, No. 4, 449--492 (2020; Zbl 1454.76094) Full Text: DOI
Bakholdin, I. B. Equations describing waves in tubes with elastic walls and numerical methods with low scheme dissipation. (English. Russian original) Zbl 1450.76020 Comput. Math. Math. Phys. 60, No. 7, 1185-1198 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 7, 1224-1238 (2020). MSC: 76L05 76M20 74F10 PDF BibTeX XML Cite \textit{I. B. Bakholdin}, Comput. Math. Math. Phys. 60, No. 7, 1185--1198 (2020; Zbl 1450.76020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 7, 1224--1238 (2020) Full Text: DOI